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Abstract 

A REST API is the standard programming interface for accessing most contemporary online and cloud applications. 

An attacker might potentially compromise a service by taking advantage of security holes in its REST API, as 

discussed in this article. To capture the best features of REST APIs and services, we provide four security criteria. 

To further automate testing and detection of rule violations, we demonstrate how to add active property checks to a 

stateful REST API fuzzer. How to efficiently and modularly build such checks is something we cover. We describe 

the security consequences of the new vulnerabilities discovered in several production-ready Azure and Office 365 

cloud services using these checkers. We have resolved all of these issues. 
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I. INTRODUCTION 

People are flocking to cloud computing. Providers of 

cloud platforms, such as Amazon Web Services [2] 

and Microsoft Azure [13], and their customers, who 

are "digitally transforming" their companies through 

process modernization and data analysis, have 

deployed thousands of new cloud services in recent 

years. These days, REST APIs are the go-to method 

for programmatically accessing cloud services [9]. 

REST APIs provide a standard method to build, 

monitor, manage, and remove cloud resources. They 

are built on top of the ubiquitous HTTP/S protocol. 

Using an interface-description language like Swagger 

(now called OpenAPI), developers of cloud services 

may describe their REST APIs and provide example 

client code [25]. What kinds of queries can a cloud 

service process, what kinds of replies may be 

expected, and how those responses should be 

formatted are all detailed in a Swagger specification, 

which covers the service's REST API. Do you know 

how safe all those APIs are? Even now, there is no 

clear answer to this issue. There is a lack of mature 

tools that can automatically verify the security and 

reliability of cloud services using their REST APIs. 

The goal of several of the existing tools for testing 

REST APIs is to find problems in the API by 

capturing live traffic, processing it using fuzz and 

replaying it [4, 21, 6, 26, 3]. To go even further into 

testing services hosted behind REST APIs, stateful 

REST API fuzzing [5] was suggested not long ago. 

This method takes a Swagger specification for a 

REST API and uses it to automatically produce 

sequences of requests rather than individual ones. in 

order to fully test the API's underlying cloud service, 

we're looking for service crashes that go unhandled 

and show up as "500 Internal Server Errors" on a test 

client. The scope of the effort is limited to the 

detection of unhandled exceptions, however it 

appears promising and reports numerous new issues 

detected. Here, we lay down four guidelines for 

protecting RESTful APIs and services, which should 

cover all the bases. • The rule of use after free. Once 

erased, a resource can never be recovered. • Rule of 

resource leakage. An unsuccessfully generated 

resource must not only be inaccessible, but it must 

also not "leak" any unwanted effects into the backend 

service state. The rule of resource hierarchy. It is not 
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allowed for another parent resource to access a child 

resource's parent resource. Rule pertaining to user-

namespaces. You can't have resources from one user 

namespace available to resources from another. As 

we'll see in the section below, an attacker could 

exploit a breach in these rules to launch an elevation-

of-privilege attack, an information disclosure attack, 

or a denial-of-service attack, all of which could 

compromise cloud resources or bypass quotas. We 

demonstrate the process of enhancing a stateful 

REST API fuzzer to examine and identify rule 

infractions. We provide an active property checker 

for every rule that does two things:(1) finds rule 

violations and(2) produces new API calls to test 

them. To rephrase, rather than passively observing 

for rule violations, each checker actively seeks to 

violate its own rule. We go over several modular 

ways to create such checks, making sure they don't 

conflict with one other. We also cover how to 

efficiently build each checker by removing likely-

redundant tests wherever feasible, because each 

checker adds additional tests to an already-large state 

space exploration. In contrast to baseline stateful 

REST API fuzzing, which can only identify "500 

Internal Server Errors," these checks are designed to 

find security rule breaches. Several operational Azure 

and Office 365 cloud services have new issues 

discovered using these checks. Incorporating security 

checkers into REST API fuzzing enhances its 

usefulness by identifying a wider range of issues with 

less incremental testing overhead. The following are 

some of the contributions of this paper: • We provide 

rules that characterize the security features of REST 

APIs. • We create and deploy active checkers to 

examine and identify rule violations. We provide 

comprehensive experimental findings that assess the 

efficacy and efficiency of these active checkers on 

three live cloud services. Using these checks, we 

discovered additional vulnerabilities in several 

production-level Azure and Office 365 cloud 

services, and we go over the security consequences of 

these vulnerabilities. Below is the outline for the 

remainder of the article. Part II provides some 

context for understanding stateful REST API fuzzing. 

We provide active checkers to test and identify 

breaches of these criteria in Section III, and we also 

add rules that encapsulate desired aspects of safe 

REST APIs. Results from experiments using active 

checkers on live cloud services are detailed in 

Section IV. We address the security implications of 

newly discovered flaws by these checkers in Section 

V. We wrap up the paper in Section VII after 

discussing relevant work in Section VI. 

 

II. STATEFUL REST API 

FUZZING 

Section III introduces security property checks that 

may be used as expansions of this basic system, after 

which this section reviews the notion of stateful 

REST API fuzzing [5]. We think that REST APIs 

make cloud services accessible. Requests are 

messages sent by a client software to a service, while 

replies are messages received back. The HTTP/S 

protocol is used to transmit these messages. Two, 

three, four, or five-digit HTTP status codes are 

assigned to each response. One specification 

language for REST APIs is Swagger [25], which is 

also called OpenAPI. The Swagger specification 

details the REST API access to a service, including 

the types of queries that the service may process, the 

possible answers, and the format of each. A REST 

API is defined by us as a limited collection of 

requests. In each request r, there is a tuple {a,t,p,b} 

that includes the following elements: an 

authentication token (a), the kind of request (t), a 

resource path (p), and the request content (b). 

Request types may take one of five possible RESTful 

values: PUT (create or update), POST (create or 

update), GET (read, list or query), DELETE (delete), 

or PATCH (update). A cloud resource and its parent 

hierarchy may be identified by its resource path, 

which is a string. Usually, p is a non-empty string 

that matches the pattern 

(/~resourceType~/resourceName~/)+, where 

resourceType is the cloud resource type and 

resourceName is the specific name of that kind of 

resource. In most cases, a request will attempt to 

create, access, or delete the resource that is last 

specified in the route. In order for the request to be 

processed properly, the request body b could include 

extra parameters along with their values. As an 

example, the following is a multi-line request to 

acquire the attributes of a specific Azure DNS zone 

[14]: 

 

The GET request has three resource names—a 

subscriptionID, a resourceGroupName, and a 

zoneName—in its route, and the body (at the end, 

represented by {}) is unfilled. 
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III. SECURITY CHECKERS 

FOR REST APIS 

Here, we outline the features and functionality of 

active security rule checkers for REST APIs. We 

begin by outlining four guidelines for protecting 

REST APIs in Section III-A. Active checkers for 

testing and detecting security rule breaches are 

described in Section III-B. There is a singular 

emphasis on a certain kind of security rule violation 

by each active checker. In Section III-C, we go over 

the several ways in which each checker may be 

integrated with the others and with the primary driver 

of stateful REST API fuzzing in a modular fashion. 

In Section III-D, we provide a novel approach to 

finding property checkers for scalable test creation. 

To prevent the user from receiving several reports of 

the same problem, we detail how to bundle together 

checker violations in Section III-E. Section A: 

Regulations about Security To capture the best 

features of REST APIs and services, we provide four 

security criteria. We talk about the security 

consequences of each rule and provide examples to 

back them up. Real flaws in deployed cloud services 

discovered by manual penetration testing or root 

cause analysis of customer-visible occurrences 

inspired all four guidelines. Later in Section V, we 

will provide examples of additional, previously 

undiscovered problems that we discovered as rule 

violations in the production Azure and Office 365 

services that were already deployed. The law of use 

following free consumption. Once erased, a resource 

can never be recovered. Put simply, if a DELETE 

action is successful on a resource, then any read, 

update, or delete operation on the same resource will 

fail. In order to remove the account associated with 

user-id1, for instance, all further attempts to utilize 

user-id1 must fail and produce a "404 Not Found" 

HTTP status code. This is achieved by sending a 

remove request to the URI /users/user-id1. When an 

API may still access a removed resource, it is a use-

after-free violation. Never again shall this occur. This 

is an obvious flaw that might compromise the 

service's backend and allow users to evade their 

resource limitations. A regulation about the loss of 

resources. When a resource creation fails, it shouldn't 

be available and shouldn't "leak" any related 

resources from the backend service state. What this 

means is that each subsequent action on a resource 

must likewise fail with a 4xx response if the 

execution of a PUT or POST request to create that 

resource fails (for whatever reason). On top of that, 

the user shouldn't see any unintended consequences 

when the resource type is successfully created in the 

backend service state. For example, the name of the 

failed-to-be-created resource must be reusable by the 

user, and it must not be tallied in the user's resource 

counter towards service quotas. To illustrate, a 

response is required after the submission of a faulty 

PUT request to generate the URI /users/user-

id1,a4xx. This URI must also be inaccessible for any 

future requests to read, edit, or delete. When an 

uncreated resource "leaks" some influence on the 

backend service state, even if it wasn't properly 

generated, a resource-leak violation has occurred. 

Attempts to re-create this resource result in "409 

Conflict" answers, or the resource may be listed by a 

future GET request but cannot be removed with a 

DELETE request. This kind of infraction is 

completely unacceptable since it might lead to 

unforeseen effects on the service's performance (for 

instance, because of excessively big database tables) 

or the capacity of the specific resource type (for 

example, if resource quota limitations are surpassed 

and no new resources can be added). 

 

Access to a sub-resource that was formed from a 

parent resource but does not have a parent-child 

connection is an example of a resource-hierarchy 

violation. In cases where such infractions are 

feasible, an adversary may be able to provide an 

illicit parent object identity. 
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Fig. 1: Use-after-free checker. 

(for instance, user-id3), and then acquire (read) or 

commandeer (write) an illegal child object (for 

instance, report-id1). Instances of resource hierarchy 

violations are obvious defects that pose a threat and 

should never occur. Rule for user-namespaces. You 

can't have resources from one user namespace 

available to resources from another. While discussing 

REST APIs, we take into account user namespaces 

that are specified by the user token that is used to 

access the API (for example, OAUTH token-based 

authentication [18]). For instance, user-id1 resource 

cannot be accessed using token-of-user-id2 of 

another user after a POST request to build URI 

/users/user-id1 with token-of-user-id1 has been sent. 

When a resource that was generated in one user's 

namespace may be accessed from another user's 

namespace, it is called a user namespace violation. 

An attacker might potentially get unauthorized access 

to another user's resources by executing REST API 

calls with an unauthorized authentication token. This 

could happen if such a violation were to occur. Part 

B: Active Verifiers Rules outlined in Section III-A 

are enforced by means of active checkers. In stateful 

REST API fuzzing, an active checker keeps an eye 

on the primary driver's exploration of state space and 

proposes additional tests to make sure certain rules 

aren't broken. In this way, an active checker increases 

the size of the search area by running additional tests 

that aim to break certain criteria. By contrast, a 

passive checker does not run any additional checks 

but instead watches the primary driver's search. 

Based on two concepts, we create active checkers 

using a modular architecture: 1) The state space 

exploration of stateful REST API fuzzing is 

unaffected by checkers since they are separate from 

the primary driver. 2) Tests are generated by separate 

checkers that are autonomous from one another and 

examine just the requests made by the primary driver. 

 

Fig. 2: Resource-leak checker. 

All of the checkers are executed once the main driver 

completes running a new test case, in order to enforce 

the first principle. As for the second principle, we 

make sure that checkers don't interfere with one other 

and work on separate test cases by ordering them 

according to their semantics (we'll get into this 

further later on). Following this, we outline the 

specifics of each checker's implementation and 

provide improvements to curb the growth of state 

spaces. Utilization verification tool. Figure 1 shows 

the use-afterfree rule checker's implementation in a 

notation similar to Python. Following the execution 

of a DELETE request by the main driver (refer to 

Figure 4), the algorithm is invoked and receives three 

inputs: a sequence of requests, or seq of requests, 

representing the most recent test case executed by the 

main driver; the global cache of dynamic objects, or 

global_cache, for all available API requests; and the 

most recent object types and ids for all dynamic 

objects, or reqCollection, for all dynamic objects. To 

begin, on line 5, we acquire a list of all the kinds of 

dynamic objects that were used by the previous 

request. Then, we create a temporary variable called 

target_obj_id to keep the id of the last object type. 

We take the final type in req_object_types as the 

actual type of the deleted object, even if the last 

request may be consuming more than one object type. 

The DELETE request at the URI 

/users/userId1/reports/reportId1 consumes two sorts 

of objects: reports and users, but it only deletes report 

objects. The for-loop iterates over all requests 

accessible in reqCollection and skips those that don't 

consume the target object type after this initial setup 

at line 14. In order for the EXECUTE function (line 
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19) to carry out the execution of request req, the 

target object id is restored in the global cache of 

dynamic objects (line 17) after a request consuming 

the target object type is located. The reason the 

global cache keeps restoring the target object id is 

because the EXECUTE function utilizes the object 

ids in global_cache to execute requests. A use-after-

free violation will be triggered if any of these 

requests are successful (see to Section III-A). 

 

Fig. 3: Resource-hierarchy checker. 

Lastly, on line 21, the inner loop (optionally) ends 

when one request for each target object type is 

detected, limiting the amount of subsequent tests 

created for each request sequence. If the value 

exhaustive option is not specified for the mode 

variable, this option is utilized. In Section IV, we 

provide comprehensive experimental data on the 

effects of this optimization. The tool for checking for 

resource leaks. You can see the description of the 

resource-leak rule checker in Figure 2. Just like the 

use-after-free checker, this method requires three 

parameters. The primary driver, whose most recent 

request resulted in an incorrect HTTP status code in 

the response (refer to Figure 4), is the target of this 

checker. The procedure starts by determining the 

kinds of dynamic objects created by the whole series 

(seq_obj_types) and the most recent request 

(target_obj_types) (lines 4 and 5). Three layered for 

loops implement the algorithm's core logic. In the 

first loop (line 6), all object types that were generated 

by the previous request are iterated over. Line 7 of 

the second loop iterates over all the object ids that 

were "guessed" for the current object type that 

returned an incorrect HTTP status code. You may 

provide an object type to the GUESS function, and it 

will return a list of probable object ids that fit that 

type but were unsuccessfully constructed. For 

example, if the API response indicates that creating a 

dynamic object with the ID "objx1" and the type "x" 

fails, the checker will try to run any request that uses 

the type "x" and indicate that it fails when using the 

ID "objx1". To prevent an explosion in the number of 

further tests, the total number of estimated values per 

object id is restricted to a parameter value that the 

user provides. On line 8, the global cache of correctly 

constructed dynamic objects is momentarily updated 

with an object-id value that is guesswork. Then, on 

line 9, the inner loop iterates over all of the requests 

in reqCollection until it finds one that consumes the 

supplied target object type and is executable (based 

on the object types created by the current sequence). 

The "guessed" item ids that were previously stored in 

the global cache are used to perform these queries 

(line 17). In this approach, the algorithm endeavors 

as 

 

Fig. 4: Checkers dispatcher. 

Contribution beyond stateful REST API fuzzing. 

Checkers enhance basic stateful REST API fuzzing in 

two ways: first, by running more tests, they increase 

the size of the state space; and second, by looking for 

replies other than 5xx, they may catch unexpected 

2xx responses as faults that violate the rules. So, it's 

evident that they improve the main driver's bug-

finding skills; using them together, the main driver 

can uncover flaws that it couldn't detect on its own. 

Active property checking vs passive monitoring. The 

checkers we define, as said before, provide more test 

cases to the main driver's search area with the goal of 

triggering and detecting specific rule violations. 

However, without actually running those additional 

tests, passive runtime monitoring of these rules 

alongside the primary driver is unlikely to be able to 

identify rule breaches. Because the primary driver's 

default state space exploration probably wouldn't try 

to re-use deleted resources or resources after a 

failure, passive monitoring alone would likely miss 

use-after-free and resource-leak rule violations, 

respectively. Because the basic main driver doesn't 

try to replace object identifiers or authentication 

tokens, passive monitoring would also miss resource 

hierarchy and user-namespace rule breaches. To 
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rephrase, the extra test cases produced by the 

checkers are not superfluous in comparison to non-

checker tests; rather, they are essential for 

discovering rule violations. The checkers work in 

tandem with one another. All four of our checkers 

work well with one another; in fact, due to the fact 

that their respective preconditions are inherently 

incompatible, no two of them can ever provide 

identical new tests. First, request sequences that 

conclude with a DELETE request activate the use-

afterfree checker. No other checker does this. As a 

second point, if the most recent request's HTTP status 

code is incorrect, just the resource-leak checker will 

be engaged. Thirdly, request sequences that do not 

conclude with a DELETE request have the resource-

ownership checker engaged as the lone checker. 

Finally, the user-namespace checker clearly adds 

another orthogonal dimension to the state space as it 

conducted tests using an attacker token that was 

distinct from the authentication token used by the 

main driver and all other checks. D. Methods for 

Finding Checkers Stateful REST API fuzzing [5] 

relies on a breadth-first search (BFS) in the search 

space defined by all potential request sequences as its 

primary search method for test creation. When it 

comes to grammar, this search technique covers all 

the bases. It covers every potential request rendering 

and every possible request sequence up to a certain 

length. The search, however, does not scale well with 

increasing sequence length as BFS usually explores a 

huge search space. Hence, BFS-Fast was 

implemented as an optimization. Each request is only 

added to one request sequence of length n in BFS-

Fast, as opposed to all of them in BFS, whenever the 

search depth grows to a new number n+1 [5]. Full 

grammar coverage is only provided by BFSFast in 

regard to all conceivable renderings of individual 

requests; it does not investigate all request sequences 

of a certain length. A subset of all potential request 

sequences is explored by BFS-Fast, which allows it 

to scale better than BFS. The amount of infractions 

that the security checkers are able to actively verify 

is, however, limited by this. Our new search 

approach, BFS-Cheap, aims to overcome this 

constraint. For a particular sequence length, BFS-

Cheap investigates all potential request sequences, 

but not with all conceivable renderings. This is in 

contrast to BFS-Fast, which fully covers all possible 

request renderings at every stage. In particular, the 

following is how BFS-Cheap functions when given 

an n-sequence set (seqSet) and a collection of 

requests (reqCollection): Add all the potential 

renderings of each req to the end of each seq, run the 

new sequence while evaluating the possible 

renderings of req, and add no more than one valid 

and one incorrect sequence rendering to seqSet for 

each seq ∈ seqSet. The use-after-free, 

resourcehierarchy, and user-namespace checking all 

rely on proper renderings, but the resource-leak 

checker relies on faulty renderings. Therefore, BFS-

Cheap is a compromise between BFS and BFS-Fast; 

for an experimental assessment, see Section IV-B. To 

prevent a huge seqSet (like BFS-Fast), it investigates 

all potential request sequences up to a certain 

sequence length (like BFS) and adds no more than 

two additional renderings to each sequence. By 

introducing two additional renderings for each 

sequence, we can actively verify all the security 

requirements outlined in Section III-A, all while 

keeping the number of sequences in seqSet 

manageable even as the length of the sequence rises. 

It should be noted that the suffix "cheap" is derived 

from the fact that BFS-Cheap is a less expensive 

variant of BFS in which the BFS"frontier" setSeq 

only receives one correct rendering for each news 

sequence. This results in less resource development 

compared to BFS, which explores all viable 

renderings of each request sequence. Consider a 

request definition that specifies 10 distinct types of 

resources, each described by an enum type. After one 

resource of a certain flavor has been successfully 

developed, BFS-Cheap will cease producing more of 

that flavor. However, BFS and BFS-Fast will 

generate 10 identical resources with ten distinct 

favors. Substantiation of Bugs Our definition of the 

bucketization technique used to group related 

violations precedes our discussion of genuine 

violation instances detected using active checkers. 

We define "bugs" as rule breaches in the context of 

active checkers. The request sequence that caused 

each issue to occur is linked with it. In light of this 

characteristic, we construct per-checker bug buckets 

according to this procedure: Each time a new issue is 

discovered, calculate all nonempty suffixes of the 

request sequence that causes 
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TABLE I: Comparison of BFS, BFS-Fast and BFS-Cheap. Shows the maximum sequence length (Max Len.), 

the number of requests sent (Tests), the percentage of tests generated by the main driver (Main) and by all 

four checkers combined (Checkers) and individually, with each search strategy after 1 hour of search. The 

second column shows the total number of requests in each API. 

the insect, beginning with the tiniest one. Include the 

new sequence in an existing bug bucket if it has a 

suffix that has already been logged. If it isn't possible, 

make a fresh bug bucket for the novel sequence. We 

keep distinct bug buckets for each checker as the 

failure circumstances are defined individually for 

each rule. This bug bucketization method is identical 

to the one in stateful REST API fuzzing [5]. Except 

for "500 Internal Server Error" flaws, which may be 

caused by both the main driver and checkers, each 

defect will only be triggered by one checker for a 

certain sequence length due to checker 

complementarity. The bug bucket of the primary 

driver or checker that triggered the new sequence will 

only be updated once for 500 bugs. 

 

IV. EXPERIMENTAL 

EVALUATION 

Here we detail the outcomes of our trials using three 

real-world cloud services. Section IV-A details these 

services and our experimental setup. Section IV-B 

then compares the three search algorithms outlined in 

Section III-D. After that, we exhibit the results 

(Section IV-C) that illustrate how many rule 

violations each checker found on the three cloud 

services and how different optimizations affected 

those findings. (A) Experimental Environment The 

following are the outcomes of our trials conducted 

with three anonymous cloud services: O-365 C is a 

communications service for Office365 [16], whereas 

Azure A and Azure B are two management services 

for Azure [13]. From thirteen to nineteen queries per 

service, it is the range of the three services' REST 

APIs. These three services were chosen because they 

are typical of the cloud services we examined in 

terms of scale and complexity. So far, we have 

conducted comparable trials with around twelve other 

production services; Section V summarizes our 

overall experience with these additional providers. 

There is a publicly-available Swagger specification 

for every service we are considering [15]. Following 

previous work, we create a test-generation language 

by compiling the specification of each service [5]. 

There is executable Python code for every grammar 

rule. All the tests presented here utilized the same 

syntax and fuzzing dictionaries for a specific service 

and API. Renders are not produced at random. To 

conduct our fuzzing studies, we used a single-

threaded fuzzer on an internet-connected PC. Each 

service API was accessible thanks to a valid 

subscription. There was no need for any additional 

service expertise or unique test setup. To prevent 

going over our service cap, our fuzzer incorporates a 

garbage-collector, similar to the one in [5], which 

removes unused resources (dynamic objects). Even 

though we test production services that are live and 

available to subscribers, we can't see what's 

happening behind the scenes of the services we test. 

The only thing our fuzzer looks at in response data 

are the HTTP status codes. We send all client-side 

queries across the internet to the target services, and 

when we get their answers, we parse them. The 

experiments presented in this section are not entirely 

controlled since we do not have control over the 

distribution of these services. The findings did not 

differ much, however, and we repeated the trials 

many times. B. Analyzing Rival Search Techniques 

For the purpose of fuzzing actual services with 

security checkers, we now compare our new search 

approach, BFS-Cheap, against BFS and BFS-Fast. 

Here we show the outcomes of tests conducted with 

three different Office 365 services: Azure A, Azure 

B, and O-365 C. With a fixed budget of one hour 

each experiment, Table I displays individual tests 

with the three search techniques on each service. 

There are a lot of metrics that are reported for each 

experiment. These include the total number of API 

requests, the maximum sequence length, the number 
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of tests, the percentage of requests sent by the main 

driver and active checkers, and the individual 

contribution of each checker. Based on Table I, it is 

evident that BFS achieves the lowest depth for all 

services, BFS-Fast reaches the highest depth, and 

BFS-Cheap offers a compromise between the two, 

being closer to BFS than BFS-Fast. As a result of 

differences in response times, the overall number of 

tests produced differs across providers. The overall 

number of tests grows significantly for BFSFAST 

with Azure B and O-365 C, while for all other 

services, this number stays rather constant. This 

growth seems to be true for O-365 C.  

 

TABLE II: Comparison of modes optimized and exhaustive for two Azure and one Office-365 services. Shows 

the number of requests sent in 1 hour (Tests) with BFS-Cheap, the percentage of tests generated by all four 

checkers combined (Checkers), and the number of bug buckets found by the main driver and each of the four 

checkers. Optimized finds all the bugs found by exhaustive but its main driver explores more states faster 

given a fixed test budget (1 hour). 

to be because BFS-FAST generates much less 

unsuccessful requests for these two services than BFS 

and BFS-Cheap. Requests that do not succeed are 

returned to our fuzzer, the client, with longer wait 

times. It is well knowledge that services may slow 

down future requests by delaying replies to rejected 

ones. When it comes to Azure B, BFS-Fast runs more 

tests than BFS or BFS-Cheap. This is due to the fact 

that BFS-Fast's request sequences are more in-depth, 

but they include numerous DELETE requests, which 

are quicker to perform (their replies are returned 

practically quickly). While BFSCheap falls 

somewhere in the middle, BFS has the greatest 

overall percentage of checker tests (Checkers) and 

BFS-FAST has the lowest. According to Section III-

D, the reason for inventing BFS-Cheap was to 

address the fact that BFS-Fast produces more tests 

than any other method, but it prunes its search area 

and activates checkers less often. O-365 C stands out, 

however, with a 33% increase in BFS-generated tests. 

A greater number of successful requests (refer to the 

preceding paragraph) caused more checker tests, 

which seems to be the cause of this surge. We can see 

that the amount of tests generated by each checker 

differs between services from the information in 

Table I. This figure is calculated by taking into 

account the depth of the object hierarchy for the 

resource hierarchy checker, the number of 

unsuccessful resource creation requests for the use-

after-free checker, and the number of DELETE 

requests performed for the use-after-free checker. In 

contrast, the majority of tests created by the checker 

are from the user-namespace checker, and it is 

activated more often and regularly. Next, we'll talk 

about how the three search algorithms yielded 

roughly identical bug counts for all three services. 

 

 

 

 

 

V. EXAMPLES OF REST API 

SECURITY 

VULNERABILITIES 

Almost a dozen operational Azure and Office 365 

cloud services, comparable in size and complexity to 

the three used before, have been fuzzed as of this 

writing. Every one of these services has a couple of 

new vulnerabilities discovered by our fuzzing efforts. 

Our new security checkers have identified rule 

violations as accounting for about one third of these 

issues, while "500 Internal Server Errors" accounts 

for around two thirds. All of these issues have been 

resolved once we notified the service owners. We 

stress that security testers boost confidence in the 

service's overall dependability and security even if 

they don't find any vulnerabilities; this is because 

they make sure the rules they verify cannot be 

broken. This section discusses the security 

significance of real-world defects detected in 

deployed Azure and Office 365 services and provides 

instances of such problems. We ensure that no 

specific service is targeted by anonymizing the names 

and crucial information of such services. Use-after-
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free violation in Azure. We discovered the following 

use-after-free violation in an Azure service. 1) Use a 

PUT request to create a new resource called R. A 

DELETE request should be used to delete resource R. 

3) Make a new PUT request to create a specific-type 

child resource of the removed resource R. An error 

message stating "500 Internal Server Error" is 

produced by this series of queries. This is caught by 

the Use-after-free checking because (1) the removed 

resource is attempted to be used again in Step 3, and 

(2) the result from Step 3 is not the anticipated "404 

Not Found" answer. Resource-hierarchy violation in 

Office365. According to the resource-hierarchy 

checker, there is a flaw in an Office 365 messaging 

service that allows users to publish, respond, and 

modify messages. 1) Make a single message called 

msg-1 by sending a POST request to /api/posts/msg-

1. 2) Make second message msg-2 (using POST 

/api/posts/msg-2). thirdly, using the POST request to 

/api/posts/msg-1/replies/reply-1, create a reply-1 to 

the first message. 4) Use msg-2 as the message 

identifier and edit reply-1 using a PUT request (with 

the format /api/posts/msg-2/replies/reply-1). Despite 

expecting a "404 Not Found" error, the last request in 

Step 4 unexpectedly gets a "200 Allowed" answer. 

This infraction of the rule shows that the reply-

posting API implementation does not examine the 

whole hierarchy when verifying the reply's rights. An 

attacker might potentially exploit security flaws in a 

system if validation checks for the hierarchy are 

missing. This would allow them to circumvent the 

parent hierarchy and access child items. Azure 

instance experiencing a resource leak. A different 

Azure service had the same issue due to the resource-

leak checker. 1) Make a brand-new CM resource with 

the name X and a specific deformity (using a PUT 

request). As it stands, this produces the bugged "500 

Internal Server Error" message. 2) There is no data 

supplied when you ask for a list of all CM resources. 

3) Substitute a different area (e.g., US-West for US-

Central) and a PUT request into Step 1 to create a 

new resource of type CM with the same name X. The 

last request in Step 3 actually returns a "409 Conflict" 

rather than the predicted "200 Created." This is 

somewhat unexpected. The service has entered an 

inconsistent state due to this behavior, which was 

caused by the unwanted sideeffects of the 

unsuccessful request in Step 1. Step 2's GET request 

confirms the user's suspicions: the CM resource X, 

which was supposed to be generated in Step 1, is still 

not there. Step 3's second PUT request, however, 

demonstrates that the service retains memory of the 

first PUT request's unsuccessful attempt to create the 

CM resource X. An attacker may theoretically abuse 

this flaw to their heart's content by creating an 

infinite supply of these "zombie" resources by 

repeating Step 1 with various names. This would 

allow them to surpass their official limit, since 

unsuccessful resource creations are (correctly) not 

tallied against the user's quota. However, it is evident 

that they are remembered (incorrectly) by some 

backend service. Additional Illustration: An Anxious 

Denial-of-Service Attack on Resources. We 

inadvertently caused another Azure service's health to 

drastically decline after five hours of fuzzing. What 

follows is a synopsis of the research on what caused 

it. To ensure that the amount of cloud resources used 

during fuzzing does not go beyond limits, our 

program incorporates a trash collector. For example, 

if the default quota for a resource type Y is 100, then 

no more than 100 of those resources may be 

generated at any one time. Through the usage of a 

DELETE request, our garbage collector ensures that 

the number of living resources never exceeds quotas. 

Our fuzzing tool usually reaches quota restrictions in 

minutes and can't continue exploring state space 

without trash collection. A PUT request to create a 

resource of a certain type—let's call it "IM"—in this 

particular Azure service produces a response rapidly, 

but in reality, it activates additional operations that 

take minutes to finish in the service backend. In the 

same vein, deleting an IM resource (using the 

DELETE command) yields the same result in a 

matter of minutes. While these PUT and DELETE 

requests indeed update IM resource counts towards 

quotas, they do so much too promptly and without 

waiting the many minutes really required to do the 

operations. Consequently, a malicious actor might 

swiftly generate and destroy several IM resources 

without going over their allotted limit, causing an 

overwhelming amount of backend operations and 

effectively flooding the backend service. We 

unintentionally set off a Denial-of-Service attack 

using our fuzzing tool. Fixing this issue may be as 

simple as waiting a few minutes after all remove 

backend operations have finished, in the case of 

instant messaging resources, before updating use 

counts towards quotas for remove requests. This 

ensures that the quantity of backend tasks is still 

limited by the official limitation, since pending 

DELETE requests will prevent any further IM 

resource-creation PUT requests from being 

processed. 

 

VI. RELATED WORK 

Our approach expands upon fuzzing for stateful 

REST APIs [5]. To automatically produce sequences 

of queries that fulfill a Swagger specification of a 

REST API, the specification is first turned into a 

fuzzing language. In contrast to the more 
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conventional grammar-based fuzzing methods, where 

the user develops a grammar by hand, stateful REST 

API fuzzing automates the construction of a fuzzing 

grammar [20], [22], [24]. The BFS and BFS-Fast 

search algorithms take their cues from the model-

based testing test generation methods [27], For 

creating minimum test cases that encompass a whole 

finite-state machine model of the system being tested, 

see [12], [28]. A new search strategy, BFS-Cheap, 

provides a middle ground between BFS and BFS-Fast 

when using active checkers. This paper also 

introduces a set of security rules for REST APIs and 

corresponding checkers to efficiently test and detect 

violations of these rules. The paper expands upon 

stateful REST API fuzzing in two ways. Using an 

HTTP-fuzzer to test REST APIs is possible since 

both requests and answers to REST APIs are sent via 

the HTTP protocol. Fuzzers can capture and replay 

HTTP traffic, parse the contents of HTTP requests 

and responses (such as embedded JSON data), and 

then fuzz them using either pre-defined heuristics or 

user-defined rules. Examples of such fuzzers are 

Burp [7], Sulley [23], BooFuzz [6], the commercial 

AppSpider [4], and Qualys's WAS [21]. In order to 

better understand HTTP requests made over REST 

APIs and direct their fuzzing, many tools that collect, 

parse, fuzz, and replay HTTP traffic have since been 

updated to use Swagger specifications [4, 21, 26, 3]. 

Unfortunately, these tools are limited to fuzzing the 

parameter values of individual requests and do not do 

any global analysis of Swagger specifications. As a 

result, they cannot construct new sequences of 

requests. This is because their fuzzing is stateless. 

Thus, it is not a good idea to add active checks to 

stateless fuzzers. Our approach, on the other hand, 

adds active checks that target specific REST API rule 

breaches to stateful REST API fuzzing. Many HTTP-

fuzzers have their roots in older web-page crawlers 

and scanners, so they can check for a wide variety of 

HTTP-specific properties. For example, they can 

ensure that responses use proper HTTP-usage and 

even detect SQL-injections or cross-site scripting 

attacks when entire web pages with HTML and 

Javascript code are returned. On the other hand, web-

pages are not often returned by REST APIs, 

rendering most of the previously described testing 

capabilities useless. Our study presents new security 

criteria that are tailored to RESTAPI use, in contrast 

to HTTP-fuzzers and web scanners. Because an 

adversary may utilize a rule's infraction to 

compromise a service's health or steal sensitive data 

or resources, these regulations are considered 

security-related. Request idempotence, in which 

sending the same GET or PATCH request again has 

no impact on the result, is one example of a rule in 

REST API use that is not "exploitable" when broken, 

although we don't cover it in this article. Considering 

how common REST APIs are, it's surprising that 

there isn't much information on how to use them 

securely. Managing authentication tokens and API 

keys is a common theme in security guidelines from 

organizations such as OWASP [19] (Open Web 

Application Security Project) or books on REST 

APIs [1] or micro-services [17]. When it comes to 

managing resources and validating inputs, the REST 

API does not provide any explicit instructions. The 

four security rules presented in this work are novel, 

as far as we are aware. In Section III, we utilized the 

term "active checker" from [10] to indicate that our 

checkers create new tests with the express purpose of 

detecting rule violations, rather than just monitoring 

API request and response sequences as in 

conventional runtime verification [8], [11]. We 

employ numerous independent security checkers 

concurrently, much as in [10]. Our approach to 

creating new tests differs from that of [10] in that it 

does not include symbolic execution, constraint 

derivation, or solution. Our fuzzing tool and its 

checkers can only view requests and answers from 

REST APIs; they have no idea how the services we 

test really function. It would be beneficial to delve 

more into this possibility in future study, since cloud 

services are often intricate distributed systems with 

components written in various languages. 

Consequently, generic symbolic-execution-based 

techniques may appear difficult. Penetration testing, 

sometimes known as pen testing, is the primary 

method now used to guarantee the security of cloud 

services. This involves security specialists reviewing 

the architecture, design, and code of cloud services 

from a security standpoint. Pen testing is costly, has 

limited reach, and requires a lot of human effort. In 

addition to pen testing, fuzzy logic and security 

checkers (such as the ones covered in this article) 

may help automate the process of finding certain 

types of security vulnerabilities. 

 

 

 

 

 

VII. CONCLUSION 

In order to capture the desired qualities of REST 

APIs and services, we established four security 

criteria. Afterwards, we demonstrated how to include 

active property checkers into a stateful REST API 

fuzzer in order to automatically test for and identify 

rule violations. Using the fuzzer and checkers 

outlined in this work, we have successfully fuzzed 

about a dozen production Azure and Office-365 
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cloud services. Every one of these services has a 

couple of new vulnerabilities discovered by our 

fuzzing efforts. Our new security checkers have 

identified rule violations as accounting for about one 

third of these issues, while "500 Internal Server 

Errors" accounts for around two thirds. The service 

owners were notified of all the issues, and they have 

all been resolved. It is rather evident that security 

vulnerabilities might arise from disobeying the four 

security principles presented in this study. The 

service owners have all taken the issues we detected 

seriously; as a result, our current bug "fixed/found" 

ratio is very close to 100%. In addition, fixing these 

problems is preferable than taking the chance of a 

live occurrence, which might be caused by an 

attacker or accidentally, and the results of which are 

uncertain. Lastly, the fact that these errors can be 

reproduced with relative ease and that our fuzzing 

method does not produce any false positives is a plus. 

On what scale do these findings apply? The only way 

to find out is to fuzz additional services using their 

REST APIs and examine more attributes to find 

various types of vulnerabilities and problems. 

Surprisingly, there is a lack of security-related 

guidelines about the use of REST APIs, despite the 

recent expansion of these APIs for use in cloud and 

online services. Contributing four rules whose 

infractions are security-relevant and nontrivial to 

verify and fulfill, our work takes a start in that 

direction. 
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