S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

Verifying the REST API Security of Cloud Services

1'S. Sushmitha, 2 P. Arthi,

1 Assistant Professor, Megha Institute of Engineering & Technology for Women, Ghatkesar.
2 MCA Student, Megha Institute of Engineering & Technology for Women, Ghatkesar.

Article Info

Received: 30-04-2025

Revised: 16-06-2025

Accepted: 28-06-2025

Abstract

A REST API is the standard programming interface for accessing most contemporary online and cloud applications.
An attacker might potentially compromise a service by taking advantage of security holes in its REST API, as
discussed in this article. To capture the best features of REST APIs and services, we provide four security criteria.
To further automate testing and detection of rule violations, we demonstrate how to add active property checks to a
stateful REST API fuzzer. How to efficiently and modularly build such checks is something we cover. We describe
the security consequences of the new vulnerabilities discovered in several production-ready Azure and Office 365
cloud services using these checkers. We have resolved all of these issues.

Keywords

Security, REST APIs, cloud computing, and test generation

I. INTRODUCTION

People are flocking to cloud computing. Providers of
cloud platforms, such as Amazon Web Services [2]
and Microsoft Azure [13], and their customers, who
are "digitally transforming" their companies through
process modernization and data analysis, have
deployed thousands of new cloud services in recent
years. These days, REST APIs are the go-to method
for programmatically accessing cloud services [9].
REST APIs provide a standard method to build,
monitor, manage, and remove cloud resources. They
are built on top of the ubiquitous HTTP/S protocol.
Using an interface-description language like Swagger
(now called OpenAPI), developers of cloud services
may describe their REST APIs and provide example
client code [25]. What kinds of queries can a cloud
service process, what kinds of replies may be
expected, and how those responses should be
formatted are all detailed in a Swagger specification,
which covers the service's REST API. Do you know
how safe all those APIs are? Even now, there is no
clear answer to this issue. There is a lack of mature
tools that can automatically verify the security and
reliability of cloud services using their REST APIs.

The goal of several of the existing tools for testing
REST APIs is to find problems in the API by
capturing live traffic, processing it using fuzz and
replaying it [4, 21, 6, 26, 3]. To go even further into
testing services hosted behind REST APIs, stateful
REST API fuzzing [5] was suggested not long ago.
This method takes a Swagger specification for a
REST API and uses it to automatically produce
sequences of requests rather than individual ones. in
order to fully test the API's underlying cloud service,
we're looking for service crashes that go unhandled
and show up as "500 Internal Server Errors" on a test
client. The scope of the effort is limited to the
detection of unhandled exceptions, however it
appears promising and reports numerous new issues
detected. Here, we lay down four guidelines for
protecting RESTful APIs and services, which should
cover all the bases. * The rule of use after free. Once
erased, a resource can never be recovered. * Rule of
resource leakage. An unsuccessfully generated
resource must not only be inaccessible, but it must
also not "leak" any unwanted effects into the backend
service state. The rule of resource hierarchy. It is not

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

allowed for another parent resource to access a child
resource's parent resource. Rule pertaining to user-
namespaces. You can't have resources from one user
namespace available to resources from another. As
we'll see in the section below, an attacker could
exploit a breach in these rules to launch an elevation-
of-privilege attack, an information disclosure attack,
or a denial-of-service attack, all of which could
compromise cloud resources or bypass quotas. We
demonstrate the process of enhancing a stateful
REST API fuzzer to examine and identify rule
infractions. We provide an active property checker
for every rule that does two things:(1) finds rule
violations and(2) produces new API calls to test
them. To rephrase, rather than passively observing
for rule violations, each checker actively seeks to
violate its own rule. We go over several modular
ways to create such checks, making sure they don't
conflict with one other. We also cover how to
efficiently build each checker by removing likely-
redundant tests wherever feasible, because each
checker adds additional tests to an already-large state
space exploration. In contrast to baseline stateful
REST API fuzzing, which can only identify "500
Internal Server Errors," these checks are designed to
find security rule breaches. Several operational Azure
and Office 365 cloud services have new issues
discovered using these checks. Incorporating security
checkers into REST API fuzzing enhances its
usefulness by identifying a wider range of issues with
less incremental testing overhead. The following are
some of the contributions of this paper: « We provide
rules that characterize the security features of REST
APIs. « We create and deploy active checkers to
examine and identify rule violations. We provide
comprehensive experimental findings that assess the
efficacy and efficiency of these active checkers on
three live cloud services. Using these checks, we
discovered additional vulnerabilities in several
production-level Azure and Office 365 cloud
services, and we go over the security consequences of
these vulnerabilities. Below is the outline for the
remainder of the article. Part II provides some
context for understanding stateful REST API fuzzing.
We provide active checkers to test and identify
breaches of these criteria in Section III, and we also
add rules that encapsulate desired aspects of safe
REST APIs. Results from experiments using active
checkers on live cloud services are detailed in
Section IV. We address the security implications of
newly discovered flaws by these checkers in Section
V. We wrap up the paper in Section VII after
discussing relevant work in Section V1.

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

II. STATEFUL REST API
FUZZING

Section III introduces security property checks that
may be used as expansions of this basic system, after
which this section reviews the notion of stateful
REST API fuzzing [5]. We think that REST APIs
make cloud services accessible. Requests are
messages sent by a client software to a service, while
replies are messages received back. The HTTP/S
protocol is used to transmit these messages. Two,
three, four, or five-digit HTTP status codes are
assigned to each response. One specification
language for REST APIs is Swagger [25], which is
also called OpenAPI. The Swagger specification
details the REST API access to a service, including
the types of queries that the service may process, the
possible answers, and the format of each. A REST
API is defined by us as a limited collection of
requests. In each request r, there is a tuple {a,t,p,b}
that includes the following elements: an
authentication token (a), the kind of request (t), a
resource path (p), and the request content (b).
Request types may take one of five possible RESTful
values: PUT (create or update), POST (create or
update), GET (read, list or query), DELETE (delete),
or PATCH (update). A cloud resource and its parent
hierarchy may be identified by its resource path,
which is a string. Usually, p is a non-empty string
that matches the pattern
(/~resourceType~/resourceName~/)+, where
resourceType is the cloud resource type and
resourceName is the specific name of that kind of
resource. In most cases, a request will attempt to
create, access, or delete the resource that is last
specified in the route. In order for the request to be
processed properly, the request body b could include
extra parameters along with their values. As an
example, the following is a multi-line request to
acquire the attributes of a specific Azure DNS zone
[14]:

{ User-auth-token } GET

https:/ /management . azure. com/

subscriptions/{subscriptionld}/

resourceGroups/{resourcecCroupName |/

providers/Microsoft .Network/
dnafiones/{zoneName)
Papi-version=2018-03-01 { }

The GET request has three resource names—a
subscriptionID, a resourceGroupName, and a
zoneName—in its route, and the body (at the end,
represented by {}) is unfilled.

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

III. SECURITY CHECKERS
FOR REST APIS

Here, we outline the features and functionality of
active security rule checkers for REST APIs. We
begin by outlining four guidelines for protecting
REST APIs in Section III-A. Active checkers for
testing and detecting security rule breaches are
described in Section III-B. There is a singular
emphasis on a certain kind of security rule violation
by each active checker. In Section III-C, we go over
the several ways in which each checker may be
integrated with the others and with the primary driver
of stateful REST API fuzzing in a modular fashion.
In Section III-D, we provide a novel approach to
finding property checkers for scalable test creation.
To prevent the user from receiving several reports of
the same problem, we detail how to bundle together
checker violations in Section III-E. Section A:
Regulations about Security To capture the best
features of REST APIs and services, we provide four
security criteria. We talk about the security
consequences of each rule and provide examples to
back them up. Real flaws in deployed cloud services
discovered by manual penetration testing or root
cause analysis of customer-visible occurrences
inspired all four guidelines. Later in Section V, we
will provide examples of additional, previously
undiscovered problems that we discovered as rule
violations in the production Azure and Office 365
services that were already deployed. The law of use
following free consumption. Once erased, a resource
can never be recovered. Put simply, if a DELETE
action is successful on a resource, then any read,
update, or delete operation on the same resource will
fail. In order to remove the account associated with
user-id1, for instance, all further attempts to utilize
user-idl must fail and produce a "404 Not Found"
HTTP status code. This is achieved by sending a
remove request to the URI /users/user-idl. When an
API may still access a removed resource, it is a use-
after-free violation. Never again shall this occur. This
is an obvious flaw that might compromise the
service's backend and allow users to evade their
resource limitations. A regulation about the loss of
resources. When a resource creation fails, it shouldn't
be available and shouldn't "leak" any related
resources from the backend service state. What this
means is that each subsequent action on a resource
must likewise fail with a 4xx response if the
execution of a PUT or POST request to create that
resource fails (for whatever reason). On top of that,
the user shouldn't see any unintended consequences
when the resource type is successfully created in the
backend service state. For example, the name of the

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

failed-to-be-created resource must be reusable by the

user, and it must not be tallied in the user's resource
counter towards service quotas. To illustrate, a
response is required after the submission of a faulty

PUT request to generate the URI /users/user-
id1,a4xx. This URI must also be inaccessible for any
future requests to read, edit, or delete. When an
uncreated resource "leaks" some influence on the
backend service state, even if it wasn't properly
generated, a resource-leak violation has occurred.
Attempts to re-create this resource result in "409
Conflict" answers, or the resource may be listed by a
future GET request but cannot be removed with a
DELETE request. This kind of infraction is
completely unacceptable since it might lead to
unforeseen effects on the service's performance (for
instance, because of excessively big database tables)

or the capacity of the specific resource type (for
example, if resource quota limitations are surpassed
and no new resources can be added).

Resource-hierarchy rule. A child resource of a parent
resource must not be accessible from another parent
resource. In other words, if a resource child is
successfully created from a resource parent and
identified as such in service resource paths of the form
{parentType)/parent /{chi1dType) /child/, the
child resource must not be accessible (i.e., must not be
successfully read, updated or deleted) when substituting the
parent resource by any other parent resource.

For example, after issuing POST requests to URIs
fusers/user-idl, fusers/user—-idz, and
Fusersfuser—idl freports/report—-idl to create
wsers user-idl, user-idZ, and then add report
report-idl to user user-idl, subsequent requests
o URI fusersfuser-id2/reports/roport-idl
must [ail since, according to the resowrce-hierarchy rule,
report report—-idl belongs to user user—idl but not to
user user—id:.

Access to a sub-resource that was formed from a
parent resource but does not have a parent-child
connection is an example of a resource-hierarchy
violation. In cases where such infractions are
feasible, an adversary may be able to provide an
illicit parent object identity.

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

1 Inpur_-z -h:q p;l;ﬂ'ml cache, reqCollection

.:_‘. i ject types consumed by the last request and
3 HWERLLY BEOre e mosl recentl obpect of the s injact Lype
4 n= mq lemgth

5 rﬁl_nhj l}]m = DOMNSUME H{H.'x[lul}

i uly th of the hject is kepl, since this is the

7 ject acinally

] l?irgbl,_i'll'lj _lype = n.'xL_-:ﬁhj _lypes|—11

9 larg;.l whij_id = glnhuJ cache|largel_ohj l.:.l]'.-c|

10 # Use the latest e of the deleted oby and exec

11 iy request thal type—checks

12 I'ﬂr mq in reqUollection:

13 nly consider requests that typechec)

14 |I la:l_'u obi_type nol in CONSLIMIE ‘s[ruﬂ

15 continog

1t P Restone i deleted ob

17 gl.-;:ha.l m.h..ll.argﬁ,_nm_tyrn.] = targel_ohj_id

18 ¥ Execulz reqoest on dele [

19 }}{IIlI"-'mq
20 asserl "HTTP status code s 4xx’
M if mode 1= "axlhaestve":

Fig. 1: Use-after-free checker.

(for instance, user-id3), and then acquire (read) or
commandeer (write) an illegal child object (for
instance, report-idl). Instances of resource hierarchy
violations are obvious defects that pose a threat and
should never occur. Rule for user-namespaces. You
can't have resources from one user namespace
available to resources from another. While discussing
REST APIs, we take into account user namespaces
that are specified by the user token that is used to
access the API (for example, OAUTH token-based
authentication [18]). For instance, user-idl resource
cannot be accessed using token-of-user-id2 of
another user after a POST request to build URI
/users/user-id1 with token-of-user-id1 has been sent.
When a resource that was generated in one user's
namespace may be accessed from another user's
namespace, it is called a user namespace violation.
An attacker might potentially get unauthorized access
to another user's resources by executing REST API
calls with an unauthorized authentication token. This
could happen if such a violation were to occur. Part
B: Active Verifiers Rules outlined in Section III-A
are enforced by means of active checkers. In stateful
REST API fuzzing, an active checker keeps an eye
on the primary driver's exploration of state space and
proposes additional tests to make sure certain rules
aren't broken. In this way, an active checker increases
the size of the search area by running additional tests
that aim to break certain criteria. By contrast, a
passive checker does not run any additional checks
but instead watches the primary driver's search.
Based on two concepts, we create active checkers
using a modular architecture: 1) The state space
exploration of stateful REST API fuzzing is
unaffected by checkers since they are separate from

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

the primary driver. 2) Tests are generated by separate
checkers that are autonomous from one another and
examine just the requests made by the primary driver.

1 Inpans: mq glnhal cache, reqCollection

z K ol types prodoced by the whole sequence a
3 # the Eal 50 oy 1o perfiomm Lype checking later on.
4 seq uh| l!.'pu.s = I‘Hﬂl)l](K ‘v[-u:qj

5 targel_obl lypes = PRODUCES(seq|—11])

6 for targel_obj_lype in targel_obj_types:

T for guessed_value in GUESS(targel_obj_type):

] global_cache|argel_obj_lype]| = guessed_valoe
9 for req in reqCollection:

||:| it 5k LI SETErS | L NS M Hy
11 il COMNSUMES(req) 1= targel_ohj_type:

12 comtinue

13 FEJUesLs I don't typeche

14 il {‘UN\lIMIn\[mﬂ - }-ul_um_ulp-:s

15 comtinue

16 it cule the request accessing the gl ohjec
17 ILXE{[]'JIL[mﬂ

1% asserl HTTP status code in 4xx class™

149 il mode 1= "exhanstive’:

el break

Fig. 2: Resource-leak checker.

All of the checkers are executed once the main driver
completes running a new test case, in order to enforce
the first principle. As for the second principle, we
make sure that checkers don't interfere with one other
and work on separate test cases by ordering them
according to their semantics (we'll get into this
further later on). Following this, we outline the
specifics of each checker's implementation and
provide improvements to curb the growth of state
spaces. Utilization verification tool. Figure 1 shows
the use-afterfree rule checker's implementation in a
notation similar to Python. Following the execution
of a DELETE request by the main driver (refer to
Figure 4), the algorithm is invoked and receives three
inputs: a sequence of requests, or seq of requests,
representing the most recent test case executed by the
main driver; the global cache of dynamic objects, or
global cache, for all available API requests; and the
most recent object types and ids for all dynamic
objects, or reqCollection, for all dynamic objects. To
begin, on line 5, we acquire a list of all the kinds of
dynamic objects that were used by the previous
request. Then, we create a temporary variable called
target obj id to keep the id of the last object type.
We take the final type in req object types as the
actual type of the deleted object, even if the last
request may be consuming more than one object type.
The DELETE request at the URI
/users/userld1/reports/reportld]l consumes two sorts
of objects: reports and users, but it only deletes report
objects. The for-loop iterates over all requests
accessible in reqCollection and skips those that don't
consume the target object type after this initial setup
at line 14. In order for the EXECUTE function (line

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

19) to carry out the execution of request req, the
target object id is restored in the global cache of
dynamic objects (line 17) after a request consuming
the target object type is located. The reason the
global cache keeps restoring the target object id is
because the EXECUTE function utilizes the object
ids in global cache to execute requests. A use-after-
free violation will be triggered if any of these
requests are successful (see to Section I11-A).

Inputs: seq, glohal_cache

i K ! | ypes consumed | i f
15 W 1 s of all prode O Teue

n = seq.length

Insi_request = seqin]

tarpel_ohi_types = OONSUMIES(seqg[n])

predecessor_ohj_types = CONSUMIES(seq| |}

B & Eetneve i R

9 mly by the last reque hiese

10 # erarchy we will try 1

11 hwal_cache = {}

12 for obj_type in targel_obj_types — predecessor_ohj_types:

13 hocal_cache[obj_tvpe] = plobal_cache[obj_type]

14 # Render sequence up o before the |

15 BEXECLUTEzeg, n—1)

16 # Kestor hildres 1 id L oy MO | g o

17 he cun warenl i id must NOT be accessible from

18 for ohi_type in local_cache:

19 global _cachelobj_type] = local_cache]obj_type]

10 EXECUTEast_requesl)

20 asser CHTTP stng code is 4xx"

Fig. 3: Resource-hierarchy checker.

Lastly, on line 21, the inner loop (optionally) ends
when one request for each target object type is
detected, limiting the amount of subsequent tests
created for each request sequence. If the value
exhaustive option is not specified for the mode
variable, this option is utilized. In Section IV, we
provide comprehensive experimental data on the
effects of this optimization. The tool for checking for
resource leaks. You can see the description of the
resource-leak rule checker in Figure 2. Just like the
use-after-free checker, this method requires three
parameters. The primary driver, whose most recent
request resulted in an incorrect HTTP status code in
the response (refer to Figure 4), is the target of this
checker. The procedure starts by determining the
kinds of dynamic objects created by the whole series
(seq_obj_types) and the most recent request
(target_obj types) (lines 4 and 5). Three layered for
loops implement the algorithm's core logic. In the
first loop (line 6), all object types that were generated
by the previous request are iterated over. Line 7 of
the second loop iterates over all the object ids that
were "guessed" for the current object type that
returned an incorrect HTTP status code. You may
provide an object type to the GUESS function, and it
will return a list of probable object ids that fit that
type but were unsuccessfully constructed. For

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

example, if the API response indicates that creating a
dynamic object with the ID "objx1" and the type "x"
fails, the checker will try to run any request that uses
the type "x" and indicate that it fails when using the
ID "objx1". To prevent an explosion in the number of
further tests, the total number of estimated values per
object id is restricted to a parameter value that the
user provides. On line 8, the global cache of correctly
constructed dynamic objects is momentarily updated
with an object-id value that is guesswork. Then, on
line 9, the inner loop iterates over all of the requests
in reqCollection until it finds one that consumes the
supplied target object type and is executable (based
on the object types created by the current sequence).
The "guessed" item ids that were previously stored in
the global cache are used to perform these queries
(line 17). In this approach, the algorithm endeavors
as

I Twputs: seq, global_cache, reqUolbection

2 i Cule y I 3 1 [l r

3 n = sequlength

4 i seqn] hitp_type = "DELETE™:

5 UseANerbrecChecker(seq, global_cache, reqCollection)
6 elsa:

T il seq(n] http_response = ""4xx’:

B Besourcel cakChecker{seq, plobal_cache, regUColleciiom)
9 else:

1 ResourceHierarchyChecker(seq, plobal_cache)

11 UserMNumespace{hecker(seq, global_cache)

Fig. 4: Checkers dispatcher.

Contribution beyond stateful REST API fuzzing.
Checkers enhance basic stateful REST API fuzzing in
two ways: first, by running more tests, they increase
the size of the state space; and second, by looking for
replies other than 5xx, they may catch unexpected
2xx responses as faults that violate the rules. So, it's
evident that they improve the main driver's bug-
finding skills; using them together, the main driver
can uncover flaws that it couldn't detect on its own.
Active property checking vs passive monitoring. The
checkers we define, as said before, provide more test
cases to the main driver's search area with the goal of
triggering and detecting specific rule violations.
However, without actually running those additional
tests, passive runtime monitoring of these rules
alongside the primary driver is unlikely to be able to
identify rule breaches. Because the primary driver's
default state space exploration probably wouldn't try
to re-use deleted resources or resources after a
failure, passive monitoring alone would likely miss
use-after-free and resource-leak rule violations,
respectively. Because the basic main driver doesn't
try to replace object identifiers or authentication
tokens, passive monitoring would also miss resource
hierarchy and user-namespace rule breaches. To

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

rephrase, the extra test cases produced by the
checkers are not superfluous in comparison to non-
checker tests; rather, they are essential for
discovering rule violations. The checkers work in
tandem with one another. All four of our checkers
work well with one another; in fact, due to the fact
that their respective preconditions are inherently
incompatible, no two of them can ever provide
identical new tests. First, request sequences that
conclude with a DELETE request activate the use-
afterfree checker. No other checker does this. As a
second point, if the most recent request's HTTP status
code is incorrect, just the resource-leak checker will
be engaged. Thirdly, request sequences that do not
conclude with a DELETE request have the resource-
ownership checker engaged as the lone checker.
Finally, the user-namespace checker clearly adds
another orthogonal dimension to the state space as it
conducted tests using an attacker token that was
distinct from the authentication token used by the
main driver and all other checks. D. Methods for
Finding Checkers Stateful REST API fuzzing [5]
relies on a breadth-first search (BFS) in the search
space defined by all potential request sequences as its
primary search method for test creation. When it
comes to grammar, this search technique covers all
the bases. It covers every potential request rendering
and every possible request sequence up to a certain
length. The search, however, does not scale well with
increasing sequence length as BFS usually explores a
huge search space. Hence, BFS-Fast was
implemented as an optimization. Each request is only
added to one request sequence of length n in BFS-
Fast, as opposed to all of them in BFS, whenever the
search depth grows to a new number n+1 [5]. Full
grammar coverage is only provided by BFSFast in
regard to all conceivable renderings of individual
requests; it does not investigate all request sequences
of a certain length. A subset of all potential request
sequences is explored by BFS-Fast, which allows it
to scale better than BFS. The amount of infractions
that the security checkers are able to actively verify
is, however, limited by this. Our new search
approach, BFS-Cheap, aims to overcome this
constraint. For a particular sequence length, BFS-
Cheap investigates all potential request sequences,
but not with all conceivable renderings. This is in
contrast to BFS-Fast, which fully covers all possible

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

request renderings at every stage. In particular, the
following is how BFS-Cheap functions when given
an n-sequence set (seqSet) and a collection of
requests (reqCollection): Add all the potential
renderings of each req to the end of each seq, run the
new sequence while evaluating the possible
renderings of req, and add no more than one valid
and one incorrect sequence rendering to seqSet for
each seq € seqSet. The use-after-free,
resourcehierarchy, and user-namespace checking all
rely on proper renderings, but the resource-leak
checker relies on faulty renderings. Therefore, BFS-
Cheap is a compromise between BFS and BFS-Fast;
for an experimental assessment, see Section IV-B. To
prevent a huge seqSet (like BFS-Fast), it investigates
all potential request sequences up to a certain
sequence length (like BFS) and adds no more than
two additional renderings to each sequence. By
introducing two additional renderings for each
sequence, we can actively verify all the security
requirements outlined in Section III-A, all while
keeping the number of sequences in seqSet
manageable even as the length of the sequence rises.
It should be noted that the suffix "cheap" is derived
from the fact that BFS-Cheap is a less expensive
variant of BFS in which the BFS"frontier" setSeq
only receives one correct rendering for each news
sequence. This results in less resource development
compared to BFS, which explores all viable
renderings of each request sequence. Consider a
request definition that specifies 10 distinct types of
resources, each described by an enum type. After one
resource of a certain flavor has been successfully
developed, BFS-Cheap will cease producing more of
that flavor. However, BFS and BFS-Fast will
generate 10 identical resources with ten distinct
favors. Substantiation of Bugs Our definition of the
bucketization technique used to group related
violations precedes our discussion of genuine
violation instances detected using active checkers.
We define "bugs" as rule breaches in the context of
active checkers. The request sequence that caused
each issue to occur is linked with it. In light of this
characteristic, we construct per-checker bug buckets
according to this procedure: Each time a new issue is
discovered, calculate all nonempty suffixes of the
request sequence that causes

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

ISSN:0976-0172

Journal of Bioscience And Technology

www.jbstonline.com

API Rl St MAX fests Main Checkers Checker Stals
M. Slralegy A Use-All-Free Leak Hicrarchy NameSpace
Amire A 13 PFS 7 3255 48.1% S10% 5% 5% 1% TERT
I'!-I".‘i-[,llmurl 4 4050 55,04 45.0% 100 (1.8% 2 4% 31.8%
BFS-Fasl 0 4347 S02% 408% 15.5% 0.2% 0.1% 25.1%
Azurc B 10 TFS 3 TIE A64% Si60 Tl A% 0% A0AT,
BFS-Cheap 3 T 462% 538 3.5% 0.4% 0.2% 49,7%
BFS-Fast 40 17416 653% 34.7% 0.3% 0.0% 00.1% 34.3%
OmsC 18 PFS 3 TTe03 8047 1060 0% 1% T1% T
BFS-Cheap 4 082 05.0% A.1% 0.0% 0.0% 0L.1% 4.0%,
BFS-Fasl 33 18120 66.9% 33.1% 0.0% 0.0% 0.1% 33.0%

TABLE I: Comparison of BFS, BFS-Fast and BFS-Cheap. Shows the maximum sequence length (Max Len.),
the number of requests sent (Tests), the percentage of tests generated by the main driver (Main) and by all
four checkers combined (Checkers) and individually, with each search strategy after 1 hour of search. The
second column shows the total number of requests in each APIL.

the insect, beginning with the tiniest one. Include the
new sequence in an existing bug bucket if it has a
suffix that has already been logged. If it isn't possible,
make a fresh bug bucket for the novel sequence. We
keep distinct bug buckets for each checker as the
failure circumstances are defined individually for
each rule. This bug bucketization method is identical
to the one in stateful REST API fuzzing [5]. Except
for "500 Internal Server Error" flaws, which may be
caused by both the main driver and checkers, each
defect will only be triggered by one checker for a
certain sequence length due to checker
complementarity. The bug bucket of the primary
driver or checker that triggered the new sequence will
only be updated once for 500 bugs.

IV. EXPERIMENTAL
EVALUATION

Here we detail the outcomes of our trials using three
real-world cloud services. Section IV-A details these
services and our experimental setup. Section IV-B
then compares the three search algorithms outlined in
Section III-D. After that, we exhibit the results
(Section IV-C) that illustrate how many rule
violations each checker found on the three cloud
services and how different optimizations affected
those findings. (A) Experimental Environment The
following are the outcomes of our trials conducted
with three anonymous cloud services: O-365 C is a
communications service for Office365 [16], whereas
Azure A and Azure B are two management services
for Azure [13]. From thirteen to nineteen queries per
service, it is the range of the three services' REST
APIs. These three services were chosen because they
are typical of the cloud services we examined in
terms of scale and complexity. So far, we have
conducted comparable trials with around twelve other

production services; Section V summarizes our
overall experience with these additional providers.
There is a publicly-available Swagger specification
for every service we are considering [15]. Following
previous work, we create a test-generation language
by compiling the specification of each service [5].
There is executable Python code for every grammar
rule. All the tests presented here utilized the same
syntax and fuzzing dictionaries for a specific service
and API. Renders are not produced at random. To
conduct our fuzzing studies, we used a single-
threaded fuzzer on an internet-connected PC. Each
service APl was accessible thanks to a wvalid
subscription. There was no need for any additional
service expertise or unique test setup. To prevent
going over our service cap, our fuzzer incorporates a
garbage-collector, similar to the one in [5], which
removes unused resources (dynamic objects). Even
though we test production services that are live and
available to subscribers, we can't see what's
happening behind the scenes of the services we test.
The only thing our fuzzer looks at in response data
are the HTTP status codes. We send all client-side
queries across the internet to the target services, and
when we get their answers, we parse them. The
experiments presented in this section are not entirely
controlled since we do not have control over the
distribution of these services. The findings did not
differ much, however, and we repeated the trials
many times. B. Analyzing Rival Search Techniques
For the purpose of fuzzing actual services with
security checkers, we now compare our new search
approach, BFS-Cheap, against BFS and BFS-Fast.
Here we show the outcomes of tests conducted with
three different Office 365 services: Azure A, Azure
B, and O-365 C. With a fixed budget of one hour
each experiment, Table I displays individual tests
with the three search techniques on each service.
There are a lot of metrics that are reported for each
experiment. These include the total number of API
requests, the maximum sequence length, the number

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

of tests, the percentage of requests sent by the main
driver and active checkers, and the individual
contribution of each checker. Based on Table I, it is
evident that BFS achieves the lowest depth for all
services, BFS-Fast reaches the highest depth, and
BFS-Cheap offers a compromise between the two,
being closer to BFS than BFS-Fast. As a result of

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

differences in response times, the overall number of
tests produced differs across providers. The overall
number of tests grows significantly for BFSFAST
with Azure B and O-365 C, while for all other
services, this number stays rather constant. This
growth seems to be true for 0-365 C.

API 'll':t:lltal Mode Slalistics Bug Buckels
I Tests Checkers Main Lse-Al-Free Leak Hierarchy NameSpace
Azure A 13 oplimized 4050 45.0F% 4 3 [1]] [i]
exhausiivie 2174 54.5% 4 3 0 0 0
Azure B (E] oplimized FEXE] A, e 1] [1] 1 i} [1]
exhaustive 9031 63 9% i) 0 i { i
035 C 18 oplimized ([T 4.1% I 1] [1] i 1]
exhaustive 11724 11.4%:] 0 0 1 0

TABLE II: Comparison of modes optimized and exhaustive for two Azure and one Office-365 services. Shows
the number of requests sent in 1 hour (Tests) with BFS-Cheap, the percentage of tests generated by all four
checkers combined (Checkers), and the number of bug buckets found by the main driver and each of the four
checkers. Optimized finds all the bugs found by exhaustive but its main driver explores more states faster

given a fixed test budget (1 hour).

to be because BFS-FAST generates much less
unsuccessful requests for these two services than BFS
and BFS-Cheap. Requests that do not succeed are
returned to our fuzzer, the client, with longer wait
times. It is well knowledge that services may slow
down future requests by delaying replies to rejected
ones. When it comes to Azure B, BFS-Fast runs more
tests than BFS or BFS-Cheap. This is due to the fact
that BFS-Fast's request sequences are more in-depth,
but they include numerous DELETE requests, which
are quicker to perform (their replies are returned
practically quickly). While BFSCheap falls
somewhere in the middle, BFS has the greatest
overall percentage of checker tests (Checkers) and
BFS-FAST has the lowest. According to Section III-
D, the reason for inventing BFS-Cheap was to
address the fact that BFS-Fast produces more tests
than any other method, but it prunes its search area
and activates checkers less often. O-365 C stands out,
however, with a 33% increase in BFS-generated tests.
A greater number of successful requests (refer to the
preceding paragraph) caused more checker tests,
which seems to be the cause of this surge. We can see
that the amount of tests generated by each checker
differs between services from the information in
Table I. This figure is calculated by taking into
account the depth of the object hierarchy for the
resource hierarchy checker, the number of
unsuccessful resource creation requests for the use-
after-free checker, and the number of DELETE
requests performed for the use-after-free checker. In
contrast, the majority of tests created by the checker
are from the user-namespace checker, and it is

activated more often and regularly. Next, we'll talk
about how the three search algorithms yielded
roughly identical bug counts for all three services.

V. EXAMPLES OF REST API
SECURITY
VULNERABILITIES

Almost a dozen operational Azure and Office 365
cloud services, comparable in size and complexity to
the three used before, have been fuzzed as of this
writing. Every one of these services has a couple of
new vulnerabilities discovered by our fuzzing efforts.
Our new security checkers have identified rule
violations as accounting for about one third of these
issues, while "500 Internal Server Errors" accounts
for around two thirds. All of these issues have been
resolved once we notified the service owners. We
stress that security testers boost confidence in the
service's overall dependability and security even if
they don't find any vulnerabilities; this is because
they make sure the rules they verify cannot be
broken. This section discusses the security
significance of real-world defects detected in
deployed Azure and Office 365 services and provides
instances of such problems. We ensure that no
specific service is targeted by anonymizing the names
and crucial information of such services. Use-after-

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

free violation in Azure. We discovered the following
use-after-free violation in an Azure service. 1) Use a
PUT request to create a new resource called R. A
DELETE request should be used to delete resource R.
3) Make a new PUT request to create a specific-type
child resource of the removed resource R. An error
message stating "500 Internal Server Error" is
produced by this series of queries. This is caught by
the Use-after-free checking because (1) the removed
resource is attempted to be used again in Step 3, and
(2) the result from Step 3 is not the anticipated "404
Not Found" answer. Resource-hierarchy violation in
Office365. According to the resource-hierarchy
checker, there is a flaw in an Office 365 messaging
service that allows users to publish, respond, and
modify messages. 1) Make a single message called
msg-1 by sending a POST request to /api/posts/msg-
1. 2) Make second message msg-2 (using POST
/api/posts/msg-2). thirdly, using the POST request to
/api/posts/msg-1/replies/reply-1, create a reply-1 to
the first message. 4) Use msg-2 as the message
identifier and edit reply-1 using a PUT request (with
the format /api/posts/msg-2/replies/reply-1). Despite
expecting a "404 Not Found" error, the last request in
Step 4 unexpectedly gets a "200 Allowed" answer.
This infraction of the rule shows that the reply-
posting API implementation does not examine the
whole hierarchy when verifying the reply's rights. An
attacker might potentially exploit security flaws in a
system if validation checks for the hierarchy are
missing. This would allow them to circumvent the
parent hierarchy and access child items. Azure
instance experiencing a resource leak. A different
Azure service had the same issue due to the resource-
leak checker. 1) Make a brand-new CM resource with
the name X and a specific deformity (using a PUT
request). As it stands, this produces the bugged "500
Internal Server Error" message. 2) There is no data
supplied when you ask for a list of all CM resources.
3) Substitute a different area (e.g., US-West for US-
Central) and a PUT request into Step 1 to create a
new resource of type CM with the same name X. The
last request in Step 3 actually returns a "409 Conflict"
rather than the predicted "200 Created." This is
somewhat unexpected. The service has entered an
inconsistent state due to this behavior, which was
caused by the unwanted sideeffects of the
unsuccessful request in Step 1. Step 2's GET request
confirms the user's suspicions: the CM resource X,
which was supposed to be generated in Step 1, is still
not there. Step 3's second PUT request, however,
demonstrates that the service retains memory of the
first PUT request's unsuccessful attempt to create the
CM resource X. An attacker may theoretically abuse
this flaw to their heart's content by creating an
infinite supply of these "zombie" resources by

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

repeating Step 1 with various names. This would
allow them to surpass their official limit, since
unsuccessful resource creations are (correctly) not
tallied against the user's quota. However, it is evident
that they are remembered (incorrectly) by some
backend service. Additional Illustration: An Anxious
Denial-of-Service Attack on Resources. We
inadvertently caused another Azure service's health to
drastically decline after five hours of fuzzing. What
follows is a synopsis of the research on what caused
it. To ensure that the amount of cloud resources used
during fuzzing does not go beyond limits, our
program incorporates a trash collector. For example,
if the default quota for a resource type Y is 100, then
no more than 100 of those resources may be
generated at any one time. Through the usage of a
DELETE request, our garbage collector ensures that
the number of living resources never exceeds quotas.
Our fuzzing tool usually reaches quota restrictions in
minutes and can't continue exploring state space
without trash collection. A PUT request to create a
resource of a certain type—let's call it "IM"—in this
particular Azure service produces a response rapidly,
but in reality, it activates additional operations that
take minutes to finish in the service backend. In the
same vein, deleting an IM resource (using the
DELETE command) yields the same result in a
matter of minutes. While these PUT and DELETE
requests indeed update IM resource counts towards
quotas, they do so much too promptly and without
waiting the many minutes really required to do the
operations. Consequently, a malicious actor might
swiftly generate and destroy several IM resources
without going over their allotted limit, causing an
overwhelming amount of backend operations and
effectively flooding the backend service. We
unintentionally set off a Denial-of-Service attack
using our fuzzing tool. Fixing this issue may be as
simple as waiting a few minutes after all remove
backend operations have finished, in the case of
instant messaging resources, before updating use
counts towards quotas for remove requests. This
ensures that the quantity of backend tasks is still
limited by the official limitation, since pending
DELETE requests will prevent any further IM
resource-creation PUT requests from being
processed.

VI. RELATED WORK

Our approach expands upon fuzzing for stateful
REST APIs [5]. To automatically produce sequences
of queries that fulfill a Swagger specification of a
REST API, the specification is first turned into a
fuzzing language. In contrast to the more

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

conventional grammar-based fuzzing methods, where
the user develops a grammar by hand, stateful REST
API fuzzing automates the construction of a fuzzing
grammar [20], [22], [24]. The BFS and BFS-Fast
search algorithms take their cues from the model-
based testing test generation methods [27], For
creating minimum test cases that encompass a whole
finite-state machine model of the system being tested,
see [12], [28]. A new search strategy, BFS-Cheap,
provides a middle ground between BFS and BFS-Fast
when wusing active checkers. This paper also
introduces a set of security rules for REST APIs and
corresponding checkers to efficiently test and detect
violations of these rules. The paper expands upon
stateful REST API fuzzing in two ways. Using an
HTTP-fuzzer to test REST APIs is possible since
both requests and answers to REST APIs are sent via
the HTTP protocol. Fuzzers can capture and replay
HTTP traffic, parse the contents of HTTP requests
and responses (such as embedded JSON data), and
then fuzz them using either pre-defined heuristics or
user-defined rules. Examples of such fuzzers are
Burp [7], Sulley [23], BooFuzz [6], the commercial
AppSpider [4], and Qualys's WAS [21]. In order to
better understand HTTP requests made over REST
APIs and direct their fuzzing, many tools that collect,
parse, fuzz, and replay HTTP traffic have since been
updated to use Swagger specifications [4, 21, 26, 3].
Unfortunately, these tools are limited to fuzzing the
parameter values of individual requests and do not do
any global analysis of Swagger specifications. As a
result, they cannot construct new sequences of
requests. This is because their fuzzing is stateless.
Thus, it is not a good idea to add active checks to
stateless fuzzers. Our approach, on the other hand,
adds active checks that target specific REST API rule
breaches to stateful REST API fuzzing. Many HTTP-
fuzzers have their roots in older web-page crawlers
and scanners, so they can check for a wide variety of
HTTP-specific properties. For example, they can
ensure that responses use proper HTTP-usage and
even detect SQL-injections or cross-site scripting
attacks when entire web pages with HTML and
Javascript code are returned. On the other hand, web-
pages are not often returned by REST APIs,
rendering most of the previously described testing
capabilities useless. Our study presents new security
criteria that are tailored to RESTAPI use, in contrast
to HTTP-fuzzers and web scanners. Because an
adversary may utilize a rule's infraction to
compromise a service's health or steal sensitive data
or resources, these regulations are considered
security-related. Request idempotence, in which
sending the same GET or PATCH request again has
no impact on the result, is one example of a rule in
REST API use that is not "exploitable" when broken,

10

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

although we don't cover it in this article. Considering
how common REST APIs are, it's surprising that
there isn't much information on how to use them
securely. Managing authentication tokens and API
keys is a common theme in security guidelines from
organizations such as OWASP [19] (Open Web
Application Security Project) or books on REST
APIs [1] or micro-services [17]. When it comes to
managing resources and validating inputs, the REST
API does not provide any explicit instructions. The
four security rules presented in this work are novel,
as far as we are aware. In Section III, we utilized the
term "active checker" from [10] to indicate that our
checkers create new tests with the express purpose of
detecting rule violations, rather than just monitoring
API request and response sequences as in
conventional runtime verification [8], [11]. We
employ numerous independent security checkers
concurrently, much as in [10]. Our approach to
creating new tests differs from that of [10] in that it
does not include symbolic execution, constraint
derivation, or solution. Our fuzzing tool and its
checkers can only view requests and answers from
REST APIs; they have no idea how the services we
test really function. It would be beneficial to delve
more into this possibility in future study, since cloud
services are often intricate distributed systems with
components written in various languages.
Consequently, generic symbolic-execution-based
techniques may appear difficult. Penetration testing,
sometimes known as pen testing, is the primary
method now used to guarantee the security of cloud
services. This involves security specialists reviewing
the architecture, design, and code of cloud services
from a security standpoint. Pen testing is costly, has
limited reach, and requires a lot of human effort. In
addition to pen testing, fuzzy logic and security
checkers (such as the ones covered in this article)
may help automate the process of finding certain
types of security vulnerabilities.

VII. CONCLUSION

In order to capture the desired qualities of REST
APIs and services, we established four security
criteria. Afterwards, we demonstrated how to include
active property checkers into a stateful REST API
fuzzer in order to automatically test for and identify
rule violations. Using the fuzzer and checkers
outlined in this work, we have successfully fuzzed
about a dozen production Azure and Office-365

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11

cloud services. Every one of these services has a
couple of new vulnerabilities discovered by our
fuzzing efforts. Our new security checkers have
identified rule violations as accounting for about one
third of these issues, while "500 Internal Server
Errors" accounts for around two thirds. The service
owners were notified of all the issues, and they have
all been resolved. It is rather evident that security
vulnerabilities might arise from disobeying the four
security principles presented in this study. The
service owners have all taken the issues we detected
seriously; as a result, our current bug "fixed/found"
ratio is very close to 100%. In addition, fixing these
problems is preferable than taking the chance of a
live occurrence, which might be caused by an
attacker or accidentally, and the results of which are
uncertain. Lastly, the fact that these errors can be
reproduced with relative ease and that our fuzzing
method does not produce any false positives is a plus.
On what scale do these findings apply? The only way
to find out is to fuzz additional services using their
REST APIs and examine more attributes to find
various types of vulnerabilities and problems.
Surprisingly, there is a lack of security-related
guidelines about the use of REST APIs, despite the
recent expansion of these APIs for use in cloud and
online services. Contributing four rules whose
infractions are security-relevant and nontrivial to
verify and fulfill, our work takes a start in that
direction.

REFERENCES

[17 S. Allamaraju. RESTful Web Services Cookbook.
O’Reilly, 2010.

[2] Amazon. AWS. https://aws.amazon.com/.

[3] APIFuzzer.
https://github.com/KissPeter/APIFuzzer.
[4] AppSpider.

https://www.rapid7.com/products/appspider.

[5] V. Atlidakis, P. Godefroid, and M. Polishchuk.
RESTIer: Stateful REST API Fuzzing. In 41st
ACM/IEEE International Conference on Software
Engineering (ICSE’2019), May 2019.

[6] BooFuzz. https://github.com/jtpereyda/boofuzz.

[7] Burp Suite. https://portswigger.net/burp.

11

ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

[8] D. Drusinsky. The Temporal Rover and the ATG
Rover. In Proceedings of the 2000 SPIN Workshop,
volume 1885 of Lecture Notes in Computer Science,
pages 323-330. Springer-Verlag, 2000.

[91 R. T. Fielding. Architectural Styles and the
Design of Network-based Software Architectures.
PhD Thesis, UC Irvine, 2000.

[10] P. Godefroid, M. Levin, and D. Molnar. Active
Property Checking. In Proceedings of
EMSOFT’2008 (8th Annual ACM & IEEE
Conference on Embedded Software), pages 207-216,
Atlanta, October 2008. ACM Press.

[11] K. Havelund and G. Rosu. Monitoring Java
Programs with Java PathExplorer. In Proceedings of
RV’2001 (First Workshop on Runtime Verification),
volume 55 of Electronic Notes in Theoretical
Computer Science, Paris, July 2001.

[12] R. L'ammel and W. Schulte. Controllable
Combinatorial Coverage in Grammar-Based Testing.
In Proceedings of TestCom’2006, 2006.

[13] Microsoft. Azure.

https://azure.microsoft.com/en-us/.

[14] Microsoft. Azure DNS Zone REST APIL
https://docs.microsoft.com/enus/rest/api/dns/zones/ge
t.

[15] Microsoft. Microsoft Azure Swagger
Specifications. https://github.com/ Azure/azure-rest-

api-specs.

http://www.jbstonline.com/
https://aws.amazon.com/
https://github.com/KissPeter/APIFuzzer
https://www.rapid7.com/products/appspider
https://github.com/jtpereyda/boofuzz
https://portswigger.net/burp
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/enus/rest/api/dns/zones/get
https://docs.microsoft.com/enus/rest/api/dns/zones/get

