
S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

1

Verifying the REST API Security of Cloud Services

1 S. Sushmitha, 2 P. Arthi,

1Assistant Professor, Megha Institute of Engineering & Technology for Women, Ghatkesar.

2 MCA Student, Megha Institute of Engineering & Technology for Women, Ghatkesar.

 Article Info

 Received: 30-04-2025 Revised: 16-06-2025 Accepted: 28-06-2025

Abstract

A REST API is the standard programming interface for accessing most contemporary online and cloud applications.

An attacker might potentially compromise a service by taking advantage of security holes in its REST API, as

discussed in this article. To capture the best features of REST APIs and services, we provide four security criteria.

To further automate testing and detection of rule violations, we demonstrate how to add active property checks to a

stateful REST API fuzzer. How to efficiently and modularly build such checks is something we cover. We describe

the security consequences of the new vulnerabilities discovered in several production-ready Azure and Office 365

cloud services using these checkers. We have resolved all of these issues.

Keywords

Security, REST APIs, cloud computing, and test generation

I. INTRODUCTION

People are flocking to cloud computing. Providers of

cloud platforms, such as Amazon Web Services [2]

and Microsoft Azure [13], and their customers, who

are "digitally transforming" their companies through

process modernization and data analysis, have

deployed thousands of new cloud services in recent

years. These days, REST APIs are the go-to method

for programmatically accessing cloud services [9].

REST APIs provide a standard method to build,

monitor, manage, and remove cloud resources. They

are built on top of the ubiquitous HTTP/S protocol.

Using an interface-description language like Swagger

(now called OpenAPI), developers of cloud services

may describe their REST APIs and provide example

client code [25]. What kinds of queries can a cloud

service process, what kinds of replies may be

expected, and how those responses should be

formatted are all detailed in a Swagger specification,

which covers the service's REST API. Do you know

how safe all those APIs are? Even now, there is no

clear answer to this issue. There is a lack of mature

tools that can automatically verify the security and

reliability of cloud services using their REST APIs.

The goal of several of the existing tools for testing

REST APIs is to find problems in the API by

capturing live traffic, processing it using fuzz and

replaying it [4, 21, 6, 26, 3]. To go even further into

testing services hosted behind REST APIs, stateful

REST API fuzzing [5] was suggested not long ago.

This method takes a Swagger specification for a

REST API and uses it to automatically produce

sequences of requests rather than individual ones. in

order to fully test the API's underlying cloud service,

we're looking for service crashes that go unhandled

and show up as "500 Internal Server Errors" on a test

client. The scope of the effort is limited to the

detection of unhandled exceptions, however it

appears promising and reports numerous new issues

detected. Here, we lay down four guidelines for

protecting RESTful APIs and services, which should

cover all the bases. • The rule of use after free. Once

erased, a resource can never be recovered. • Rule of

resource leakage. An unsuccessfully generated

resource must not only be inaccessible, but it must

also not "leak" any unwanted effects into the backend

service state. The rule of resource hierarchy. It is not

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

2

allowed for another parent resource to access a child

resource's parent resource. Rule pertaining to user-

namespaces. You can't have resources from one user

namespace available to resources from another. As

we'll see in the section below, an attacker could

exploit a breach in these rules to launch an elevation-

of-privilege attack, an information disclosure attack,

or a denial-of-service attack, all of which could

compromise cloud resources or bypass quotas. We

demonstrate the process of enhancing a stateful

REST API fuzzer to examine and identify rule

infractions. We provide an active property checker

for every rule that does two things:(1) finds rule

violations and(2) produces new API calls to test

them. To rephrase, rather than passively observing

for rule violations, each checker actively seeks to

violate its own rule. We go over several modular

ways to create such checks, making sure they don't

conflict with one other. We also cover how to

efficiently build each checker by removing likely-

redundant tests wherever feasible, because each

checker adds additional tests to an already-large state

space exploration. In contrast to baseline stateful

REST API fuzzing, which can only identify "500

Internal Server Errors," these checks are designed to

find security rule breaches. Several operational Azure

and Office 365 cloud services have new issues

discovered using these checks. Incorporating security

checkers into REST API fuzzing enhances its

usefulness by identifying a wider range of issues with

less incremental testing overhead. The following are

some of the contributions of this paper: • We provide

rules that characterize the security features of REST

APIs. • We create and deploy active checkers to

examine and identify rule violations. We provide

comprehensive experimental findings that assess the

efficacy and efficiency of these active checkers on

three live cloud services. Using these checks, we

discovered additional vulnerabilities in several

production-level Azure and Office 365 cloud

services, and we go over the security consequences of

these vulnerabilities. Below is the outline for the

remainder of the article. Part II provides some

context for understanding stateful REST API fuzzing.

We provide active checkers to test and identify

breaches of these criteria in Section III, and we also

add rules that encapsulate desired aspects of safe

REST APIs. Results from experiments using active

checkers on live cloud services are detailed in

Section IV. We address the security implications of

newly discovered flaws by these checkers in Section

V. We wrap up the paper in Section VII after

discussing relevant work in Section VI.

II. STATEFUL REST API

FUZZING

Section III introduces security property checks that

may be used as expansions of this basic system, after

which this section reviews the notion of stateful

REST API fuzzing [5]. We think that REST APIs

make cloud services accessible. Requests are

messages sent by a client software to a service, while

replies are messages received back. The HTTP/S

protocol is used to transmit these messages. Two,

three, four, or five-digit HTTP status codes are

assigned to each response. One specification

language for REST APIs is Swagger [25], which is

also called OpenAPI. The Swagger specification

details the REST API access to a service, including

the types of queries that the service may process, the

possible answers, and the format of each. A REST

API is defined by us as a limited collection of

requests. In each request r, there is a tuple {a,t,p,b}

that includes the following elements: an

authentication token (a), the kind of request (t), a

resource path (p), and the request content (b).

Request types may take one of five possible RESTful

values: PUT (create or update), POST (create or

update), GET (read, list or query), DELETE (delete),

or PATCH (update). A cloud resource and its parent

hierarchy may be identified by its resource path,

which is a string. Usually, p is a non-empty string

that matches the pattern

(/~resourceType~/resourceName~/)+, where

resourceType is the cloud resource type and

resourceName is the specific name of that kind of

resource. In most cases, a request will attempt to

create, access, or delete the resource that is last

specified in the route. In order for the request to be

processed properly, the request body b could include

extra parameters along with their values. As an

example, the following is a multi-line request to

acquire the attributes of a specific Azure DNS zone

[14]:

The GET request has three resource names—a

subscriptionID, a resourceGroupName, and a

zoneName—in its route, and the body (at the end,

represented by {}) is unfilled.

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

3

III. SECURITY CHECKERS

FOR REST APIS

Here, we outline the features and functionality of

active security rule checkers for REST APIs. We

begin by outlining four guidelines for protecting

REST APIs in Section III-A. Active checkers for

testing and detecting security rule breaches are

described in Section III-B. There is a singular

emphasis on a certain kind of security rule violation

by each active checker. In Section III-C, we go over

the several ways in which each checker may be

integrated with the others and with the primary driver

of stateful REST API fuzzing in a modular fashion.

In Section III-D, we provide a novel approach to

finding property checkers for scalable test creation.

To prevent the user from receiving several reports of

the same problem, we detail how to bundle together

checker violations in Section III-E. Section A:

Regulations about Security To capture the best

features of REST APIs and services, we provide four

security criteria. We talk about the security

consequences of each rule and provide examples to

back them up. Real flaws in deployed cloud services

discovered by manual penetration testing or root

cause analysis of customer-visible occurrences

inspired all four guidelines. Later in Section V, we

will provide examples of additional, previously

undiscovered problems that we discovered as rule

violations in the production Azure and Office 365

services that were already deployed. The law of use

following free consumption. Once erased, a resource

can never be recovered. Put simply, if a DELETE

action is successful on a resource, then any read,

update, or delete operation on the same resource will

fail. In order to remove the account associated with

user-id1, for instance, all further attempts to utilize

user-id1 must fail and produce a "404 Not Found"

HTTP status code. This is achieved by sending a

remove request to the URI /users/user-id1. When an

API may still access a removed resource, it is a use-

after-free violation. Never again shall this occur. This

is an obvious flaw that might compromise the

service's backend and allow users to evade their

resource limitations. A regulation about the loss of

resources. When a resource creation fails, it shouldn't

be available and shouldn't "leak" any related

resources from the backend service state. What this

means is that each subsequent action on a resource

must likewise fail with a 4xx response if the

execution of a PUT or POST request to create that

resource fails (for whatever reason). On top of that,

the user shouldn't see any unintended consequences

when the resource type is successfully created in the

backend service state. For example, the name of the

failed-to-be-created resource must be reusable by the

user, and it must not be tallied in the user's resource

counter towards service quotas. To illustrate, a

response is required after the submission of a faulty

PUT request to generate the URI /users/user-

id1,a4xx. This URI must also be inaccessible for any

future requests to read, edit, or delete. When an

uncreated resource "leaks" some influence on the

backend service state, even if it wasn't properly

generated, a resource-leak violation has occurred.

Attempts to re-create this resource result in "409

Conflict" answers, or the resource may be listed by a

future GET request but cannot be removed with a

DELETE request. This kind of infraction is

completely unacceptable since it might lead to

unforeseen effects on the service's performance (for

instance, because of excessively big database tables)

or the capacity of the specific resource type (for

example, if resource quota limitations are surpassed

and no new resources can be added).

Access to a sub-resource that was formed from a

parent resource but does not have a parent-child

connection is an example of a resource-hierarchy

violation. In cases where such infractions are

feasible, an adversary may be able to provide an

illicit parent object identity.

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

4

Fig. 1: Use-after-free checker.

(for instance, user-id3), and then acquire (read) or

commandeer (write) an illegal child object (for

instance, report-id1). Instances of resource hierarchy

violations are obvious defects that pose a threat and

should never occur. Rule for user-namespaces. You

can't have resources from one user namespace

available to resources from another. While discussing

REST APIs, we take into account user namespaces

that are specified by the user token that is used to

access the API (for example, OAUTH token-based

authentication [18]). For instance, user-id1 resource

cannot be accessed using token-of-user-id2 of

another user after a POST request to build URI

/users/user-id1 with token-of-user-id1 has been sent.

When a resource that was generated in one user's

namespace may be accessed from another user's

namespace, it is called a user namespace violation.

An attacker might potentially get unauthorized access

to another user's resources by executing REST API

calls with an unauthorized authentication token. This

could happen if such a violation were to occur. Part

B: Active Verifiers Rules outlined in Section III-A

are enforced by means of active checkers. In stateful

REST API fuzzing, an active checker keeps an eye

on the primary driver's exploration of state space and

proposes additional tests to make sure certain rules

aren't broken. In this way, an active checker increases

the size of the search area by running additional tests

that aim to break certain criteria. By contrast, a

passive checker does not run any additional checks

but instead watches the primary driver's search.

Based on two concepts, we create active checkers

using a modular architecture: 1) The state space

exploration of stateful REST API fuzzing is

unaffected by checkers since they are separate from

the primary driver. 2) Tests are generated by separate

checkers that are autonomous from one another and

examine just the requests made by the primary driver.

Fig. 2: Resource-leak checker.

All of the checkers are executed once the main driver

completes running a new test case, in order to enforce

the first principle. As for the second principle, we

make sure that checkers don't interfere with one other

and work on separate test cases by ordering them

according to their semantics (we'll get into this

further later on). Following this, we outline the

specifics of each checker's implementation and

provide improvements to curb the growth of state

spaces. Utilization verification tool. Figure 1 shows

the use-afterfree rule checker's implementation in a

notation similar to Python. Following the execution

of a DELETE request by the main driver (refer to

Figure 4), the algorithm is invoked and receives three

inputs: a sequence of requests, or seq of requests,

representing the most recent test case executed by the

main driver; the global cache of dynamic objects, or

global_cache, for all available API requests; and the

most recent object types and ids for all dynamic

objects, or reqCollection, for all dynamic objects. To

begin, on line 5, we acquire a list of all the kinds of

dynamic objects that were used by the previous

request. Then, we create a temporary variable called

target_obj_id to keep the id of the last object type.

We take the final type in req_object_types as the

actual type of the deleted object, even if the last

request may be consuming more than one object type.

The DELETE request at the URI

/users/userId1/reports/reportId1 consumes two sorts

of objects: reports and users, but it only deletes report

objects. The for-loop iterates over all requests

accessible in reqCollection and skips those that don't

consume the target object type after this initial setup

at line 14. In order for the EXECUTE function (line

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

5

19) to carry out the execution of request req, the

target object id is restored in the global cache of

dynamic objects (line 17) after a request consuming

the target object type is located. The reason the

global cache keeps restoring the target object id is

because the EXECUTE function utilizes the object

ids in global_cache to execute requests. A use-after-

free violation will be triggered if any of these

requests are successful (see to Section III-A).

Fig. 3: Resource-hierarchy checker.

Lastly, on line 21, the inner loop (optionally) ends

when one request for each target object type is

detected, limiting the amount of subsequent tests

created for each request sequence. If the value

exhaustive option is not specified for the mode

variable, this option is utilized. In Section IV, we

provide comprehensive experimental data on the

effects of this optimization. The tool for checking for

resource leaks. You can see the description of the

resource-leak rule checker in Figure 2. Just like the

use-after-free checker, this method requires three

parameters. The primary driver, whose most recent

request resulted in an incorrect HTTP status code in

the response (refer to Figure 4), is the target of this

checker. The procedure starts by determining the

kinds of dynamic objects created by the whole series

(seq_obj_types) and the most recent request

(target_obj_types) (lines 4 and 5). Three layered for

loops implement the algorithm's core logic. In the

first loop (line 6), all object types that were generated

by the previous request are iterated over. Line 7 of

the second loop iterates over all the object ids that

were "guessed" for the current object type that

returned an incorrect HTTP status code. You may

provide an object type to the GUESS function, and it

will return a list of probable object ids that fit that

type but were unsuccessfully constructed. For

example, if the API response indicates that creating a

dynamic object with the ID "objx1" and the type "x"

fails, the checker will try to run any request that uses

the type "x" and indicate that it fails when using the

ID "objx1". To prevent an explosion in the number of

further tests, the total number of estimated values per

object id is restricted to a parameter value that the

user provides. On line 8, the global cache of correctly

constructed dynamic objects is momentarily updated

with an object-id value that is guesswork. Then, on

line 9, the inner loop iterates over all of the requests

in reqCollection until it finds one that consumes the

supplied target object type and is executable (based

on the object types created by the current sequence).

The "guessed" item ids that were previously stored in

the global cache are used to perform these queries

(line 17). In this approach, the algorithm endeavors

as

Fig. 4: Checkers dispatcher.

Contribution beyond stateful REST API fuzzing.

Checkers enhance basic stateful REST API fuzzing in

two ways: first, by running more tests, they increase

the size of the state space; and second, by looking for

replies other than 5xx, they may catch unexpected

2xx responses as faults that violate the rules. So, it's

evident that they improve the main driver's bug-

finding skills; using them together, the main driver

can uncover flaws that it couldn't detect on its own.

Active property checking vs passive monitoring. The

checkers we define, as said before, provide more test

cases to the main driver's search area with the goal of

triggering and detecting specific rule violations.

However, without actually running those additional

tests, passive runtime monitoring of these rules

alongside the primary driver is unlikely to be able to

identify rule breaches. Because the primary driver's

default state space exploration probably wouldn't try

to re-use deleted resources or resources after a

failure, passive monitoring alone would likely miss

use-after-free and resource-leak rule violations,

respectively. Because the basic main driver doesn't

try to replace object identifiers or authentication

tokens, passive monitoring would also miss resource

hierarchy and user-namespace rule breaches. To

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

6

rephrase, the extra test cases produced by the

checkers are not superfluous in comparison to non-

checker tests; rather, they are essential for

discovering rule violations. The checkers work in

tandem with one another. All four of our checkers

work well with one another; in fact, due to the fact

that their respective preconditions are inherently

incompatible, no two of them can ever provide

identical new tests. First, request sequences that

conclude with a DELETE request activate the use-

afterfree checker. No other checker does this. As a

second point, if the most recent request's HTTP status

code is incorrect, just the resource-leak checker will

be engaged. Thirdly, request sequences that do not

conclude with a DELETE request have the resource-

ownership checker engaged as the lone checker.

Finally, the user-namespace checker clearly adds

another orthogonal dimension to the state space as it

conducted tests using an attacker token that was

distinct from the authentication token used by the

main driver and all other checks. D. Methods for

Finding Checkers Stateful REST API fuzzing [5]

relies on a breadth-first search (BFS) in the search

space defined by all potential request sequences as its

primary search method for test creation. When it

comes to grammar, this search technique covers all

the bases. It covers every potential request rendering

and every possible request sequence up to a certain

length. The search, however, does not scale well with

increasing sequence length as BFS usually explores a

huge search space. Hence, BFS-Fast was

implemented as an optimization. Each request is only

added to one request sequence of length n in BFS-

Fast, as opposed to all of them in BFS, whenever the

search depth grows to a new number n+1 [5]. Full

grammar coverage is only provided by BFSFast in

regard to all conceivable renderings of individual

requests; it does not investigate all request sequences

of a certain length. A subset of all potential request

sequences is explored by BFS-Fast, which allows it

to scale better than BFS. The amount of infractions

that the security checkers are able to actively verify

is, however, limited by this. Our new search

approach, BFS-Cheap, aims to overcome this

constraint. For a particular sequence length, BFS-

Cheap investigates all potential request sequences,

but not with all conceivable renderings. This is in

contrast to BFS-Fast, which fully covers all possible

request renderings at every stage. In particular, the

following is how BFS-Cheap functions when given

an n-sequence set (seqSet) and a collection of

requests (reqCollection): Add all the potential

renderings of each req to the end of each seq, run the

new sequence while evaluating the possible

renderings of req, and add no more than one valid

and one incorrect sequence rendering to seqSet for

each seq ∈ seqSet. The use-after-free,

resourcehierarchy, and user-namespace checking all

rely on proper renderings, but the resource-leak

checker relies on faulty renderings. Therefore, BFS-

Cheap is a compromise between BFS and BFS-Fast;

for an experimental assessment, see Section IV-B. To

prevent a huge seqSet (like BFS-Fast), it investigates

all potential request sequences up to a certain

sequence length (like BFS) and adds no more than

two additional renderings to each sequence. By

introducing two additional renderings for each

sequence, we can actively verify all the security

requirements outlined in Section III-A, all while

keeping the number of sequences in seqSet

manageable even as the length of the sequence rises.

It should be noted that the suffix "cheap" is derived

from the fact that BFS-Cheap is a less expensive

variant of BFS in which the BFS"frontier" setSeq

only receives one correct rendering for each news

sequence. This results in less resource development

compared to BFS, which explores all viable

renderings of each request sequence. Consider a

request definition that specifies 10 distinct types of

resources, each described by an enum type. After one

resource of a certain flavor has been successfully

developed, BFS-Cheap will cease producing more of

that flavor. However, BFS and BFS-Fast will

generate 10 identical resources with ten distinct

favors. Substantiation of Bugs Our definition of the

bucketization technique used to group related

violations precedes our discussion of genuine

violation instances detected using active checkers.

We define "bugs" as rule breaches in the context of

active checkers. The request sequence that caused

each issue to occur is linked with it. In light of this

characteristic, we construct per-checker bug buckets

according to this procedure: Each time a new issue is

discovered, calculate all nonempty suffixes of the

request sequence that causes

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

7

TABLE I: Comparison of BFS, BFS-Fast and BFS-Cheap. Shows the maximum sequence length (Max Len.),

the number of requests sent (Tests), the percentage of tests generated by the main driver (Main) and by all

four checkers combined (Checkers) and individually, with each search strategy after 1 hour of search. The

second column shows the total number of requests in each API.

the insect, beginning with the tiniest one. Include the

new sequence in an existing bug bucket if it has a

suffix that has already been logged. If it isn't possible,

make a fresh bug bucket for the novel sequence. We

keep distinct bug buckets for each checker as the

failure circumstances are defined individually for

each rule. This bug bucketization method is identical

to the one in stateful REST API fuzzing [5]. Except

for "500 Internal Server Error" flaws, which may be

caused by both the main driver and checkers, each

defect will only be triggered by one checker for a

certain sequence length due to checker

complementarity. The bug bucket of the primary

driver or checker that triggered the new sequence will

only be updated once for 500 bugs.

IV. EXPERIMENTAL

EVALUATION

Here we detail the outcomes of our trials using three

real-world cloud services. Section IV-A details these

services and our experimental setup. Section IV-B

then compares the three search algorithms outlined in

Section III-D. After that, we exhibit the results

(Section IV-C) that illustrate how many rule

violations each checker found on the three cloud

services and how different optimizations affected

those findings. (A) Experimental Environment The

following are the outcomes of our trials conducted

with three anonymous cloud services: O-365 C is a

communications service for Office365 [16], whereas

Azure A and Azure B are two management services

for Azure [13]. From thirteen to nineteen queries per

service, it is the range of the three services' REST

APIs. These three services were chosen because they

are typical of the cloud services we examined in

terms of scale and complexity. So far, we have

conducted comparable trials with around twelve other

production services; Section V summarizes our

overall experience with these additional providers.

There is a publicly-available Swagger specification

for every service we are considering [15]. Following

previous work, we create a test-generation language

by compiling the specification of each service [5].

There is executable Python code for every grammar

rule. All the tests presented here utilized the same

syntax and fuzzing dictionaries for a specific service

and API. Renders are not produced at random. To

conduct our fuzzing studies, we used a single-

threaded fuzzer on an internet-connected PC. Each

service API was accessible thanks to a valid

subscription. There was no need for any additional

service expertise or unique test setup. To prevent

going over our service cap, our fuzzer incorporates a

garbage-collector, similar to the one in [5], which

removes unused resources (dynamic objects). Even

though we test production services that are live and

available to subscribers, we can't see what's

happening behind the scenes of the services we test.

The only thing our fuzzer looks at in response data

are the HTTP status codes. We send all client-side

queries across the internet to the target services, and

when we get their answers, we parse them. The

experiments presented in this section are not entirely

controlled since we do not have control over the

distribution of these services. The findings did not

differ much, however, and we repeated the trials

many times. B. Analyzing Rival Search Techniques

For the purpose of fuzzing actual services with

security checkers, we now compare our new search

approach, BFS-Cheap, against BFS and BFS-Fast.

Here we show the outcomes of tests conducted with

three different Office 365 services: Azure A, Azure

B, and O-365 C. With a fixed budget of one hour

each experiment, Table I displays individual tests

with the three search techniques on each service.

There are a lot of metrics that are reported for each

experiment. These include the total number of API

requests, the maximum sequence length, the number

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

8

of tests, the percentage of requests sent by the main

driver and active checkers, and the individual

contribution of each checker. Based on Table I, it is

evident that BFS achieves the lowest depth for all

services, BFS-Fast reaches the highest depth, and

BFS-Cheap offers a compromise between the two,

being closer to BFS than BFS-Fast. As a result of

differences in response times, the overall number of

tests produced differs across providers. The overall

number of tests grows significantly for BFSFAST

with Azure B and O-365 C, while for all other

services, this number stays rather constant. This

growth seems to be true for O-365 C.

TABLE II: Comparison of modes optimized and exhaustive for two Azure and one Office-365 services. Shows

the number of requests sent in 1 hour (Tests) with BFS-Cheap, the percentage of tests generated by all four

checkers combined (Checkers), and the number of bug buckets found by the main driver and each of the four

checkers. Optimized finds all the bugs found by exhaustive but its main driver explores more states faster

given a fixed test budget (1 hour).

to be because BFS-FAST generates much less

unsuccessful requests for these two services than BFS

and BFS-Cheap. Requests that do not succeed are

returned to our fuzzer, the client, with longer wait

times. It is well knowledge that services may slow

down future requests by delaying replies to rejected

ones. When it comes to Azure B, BFS-Fast runs more

tests than BFS or BFS-Cheap. This is due to the fact

that BFS-Fast's request sequences are more in-depth,

but they include numerous DELETE requests, which

are quicker to perform (their replies are returned

practically quickly). While BFSCheap falls

somewhere in the middle, BFS has the greatest

overall percentage of checker tests (Checkers) and

BFS-FAST has the lowest. According to Section III-

D, the reason for inventing BFS-Cheap was to

address the fact that BFS-Fast produces more tests

than any other method, but it prunes its search area

and activates checkers less often. O-365 C stands out,

however, with a 33% increase in BFS-generated tests.

A greater number of successful requests (refer to the

preceding paragraph) caused more checker tests,

which seems to be the cause of this surge. We can see

that the amount of tests generated by each checker

differs between services from the information in

Table I. This figure is calculated by taking into

account the depth of the object hierarchy for the

resource hierarchy checker, the number of

unsuccessful resource creation requests for the use-

after-free checker, and the number of DELETE

requests performed for the use-after-free checker. In

contrast, the majority of tests created by the checker

are from the user-namespace checker, and it is

activated more often and regularly. Next, we'll talk

about how the three search algorithms yielded

roughly identical bug counts for all three services.

V. EXAMPLES OF REST API

SECURITY

VULNERABILITIES

Almost a dozen operational Azure and Office 365

cloud services, comparable in size and complexity to

the three used before, have been fuzzed as of this

writing. Every one of these services has a couple of

new vulnerabilities discovered by our fuzzing efforts.

Our new security checkers have identified rule

violations as accounting for about one third of these

issues, while "500 Internal Server Errors" accounts

for around two thirds. All of these issues have been

resolved once we notified the service owners. We

stress that security testers boost confidence in the

service's overall dependability and security even if

they don't find any vulnerabilities; this is because

they make sure the rules they verify cannot be

broken. This section discusses the security

significance of real-world defects detected in

deployed Azure and Office 365 services and provides

instances of such problems. We ensure that no

specific service is targeted by anonymizing the names

and crucial information of such services. Use-after-

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

9

free violation in Azure. We discovered the following

use-after-free violation in an Azure service. 1) Use a

PUT request to create a new resource called R. A

DELETE request should be used to delete resource R.

3) Make a new PUT request to create a specific-type

child resource of the removed resource R. An error

message stating "500 Internal Server Error" is

produced by this series of queries. This is caught by

the Use-after-free checking because (1) the removed

resource is attempted to be used again in Step 3, and

(2) the result from Step 3 is not the anticipated "404

Not Found" answer. Resource-hierarchy violation in

Office365. According to the resource-hierarchy

checker, there is a flaw in an Office 365 messaging

service that allows users to publish, respond, and

modify messages. 1) Make a single message called

msg-1 by sending a POST request to /api/posts/msg-

1. 2) Make second message msg-2 (using POST

/api/posts/msg-2). thirdly, using the POST request to

/api/posts/msg-1/replies/reply-1, create a reply-1 to

the first message. 4) Use msg-2 as the message

identifier and edit reply-1 using a PUT request (with

the format /api/posts/msg-2/replies/reply-1). Despite

expecting a "404 Not Found" error, the last request in

Step 4 unexpectedly gets a "200 Allowed" answer.

This infraction of the rule shows that the reply-

posting API implementation does not examine the

whole hierarchy when verifying the reply's rights. An

attacker might potentially exploit security flaws in a

system if validation checks for the hierarchy are

missing. This would allow them to circumvent the

parent hierarchy and access child items. Azure

instance experiencing a resource leak. A different

Azure service had the same issue due to the resource-

leak checker. 1) Make a brand-new CM resource with

the name X and a specific deformity (using a PUT

request). As it stands, this produces the bugged "500

Internal Server Error" message. 2) There is no data

supplied when you ask for a list of all CM resources.

3) Substitute a different area (e.g., US-West for US-

Central) and a PUT request into Step 1 to create a

new resource of type CM with the same name X. The

last request in Step 3 actually returns a "409 Conflict"

rather than the predicted "200 Created." This is

somewhat unexpected. The service has entered an

inconsistent state due to this behavior, which was

caused by the unwanted sideeffects of the

unsuccessful request in Step 1. Step 2's GET request

confirms the user's suspicions: the CM resource X,

which was supposed to be generated in Step 1, is still

not there. Step 3's second PUT request, however,

demonstrates that the service retains memory of the

first PUT request's unsuccessful attempt to create the

CM resource X. An attacker may theoretically abuse

this flaw to their heart's content by creating an

infinite supply of these "zombie" resources by

repeating Step 1 with various names. This would

allow them to surpass their official limit, since

unsuccessful resource creations are (correctly) not

tallied against the user's quota. However, it is evident

that they are remembered (incorrectly) by some

backend service. Additional Illustration: An Anxious

Denial-of-Service Attack on Resources. We

inadvertently caused another Azure service's health to

drastically decline after five hours of fuzzing. What

follows is a synopsis of the research on what caused

it. To ensure that the amount of cloud resources used

during fuzzing does not go beyond limits, our

program incorporates a trash collector. For example,

if the default quota for a resource type Y is 100, then

no more than 100 of those resources may be

generated at any one time. Through the usage of a

DELETE request, our garbage collector ensures that

the number of living resources never exceeds quotas.

Our fuzzing tool usually reaches quota restrictions in

minutes and can't continue exploring state space

without trash collection. A PUT request to create a

resource of a certain type—let's call it "IM"—in this

particular Azure service produces a response rapidly,

but in reality, it activates additional operations that

take minutes to finish in the service backend. In the

same vein, deleting an IM resource (using the

DELETE command) yields the same result in a

matter of minutes. While these PUT and DELETE

requests indeed update IM resource counts towards

quotas, they do so much too promptly and without

waiting the many minutes really required to do the

operations. Consequently, a malicious actor might

swiftly generate and destroy several IM resources

without going over their allotted limit, causing an

overwhelming amount of backend operations and

effectively flooding the backend service. We

unintentionally set off a Denial-of-Service attack

using our fuzzing tool. Fixing this issue may be as

simple as waiting a few minutes after all remove

backend operations have finished, in the case of

instant messaging resources, before updating use

counts towards quotas for remove requests. This

ensures that the quantity of backend tasks is still

limited by the official limitation, since pending

DELETE requests will prevent any further IM

resource-creation PUT requests from being

processed.

VI. RELATED WORK

Our approach expands upon fuzzing for stateful

REST APIs [5]. To automatically produce sequences

of queries that fulfill a Swagger specification of a

REST API, the specification is first turned into a

fuzzing language. In contrast to the more

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

10

conventional grammar-based fuzzing methods, where

the user develops a grammar by hand, stateful REST

API fuzzing automates the construction of a fuzzing

grammar [20], [22], [24]. The BFS and BFS-Fast

search algorithms take their cues from the model-

based testing test generation methods [27], For

creating minimum test cases that encompass a whole

finite-state machine model of the system being tested,

see [12], [28]. A new search strategy, BFS-Cheap,

provides a middle ground between BFS and BFS-Fast

when using active checkers. This paper also

introduces a set of security rules for REST APIs and

corresponding checkers to efficiently test and detect

violations of these rules. The paper expands upon

stateful REST API fuzzing in two ways. Using an

HTTP-fuzzer to test REST APIs is possible since

both requests and answers to REST APIs are sent via

the HTTP protocol. Fuzzers can capture and replay

HTTP traffic, parse the contents of HTTP requests

and responses (such as embedded JSON data), and

then fuzz them using either pre-defined heuristics or

user-defined rules. Examples of such fuzzers are

Burp [7], Sulley [23], BooFuzz [6], the commercial

AppSpider [4], and Qualys's WAS [21]. In order to

better understand HTTP requests made over REST

APIs and direct their fuzzing, many tools that collect,

parse, fuzz, and replay HTTP traffic have since been

updated to use Swagger specifications [4, 21, 26, 3].

Unfortunately, these tools are limited to fuzzing the

parameter values of individual requests and do not do

any global analysis of Swagger specifications. As a

result, they cannot construct new sequences of

requests. This is because their fuzzing is stateless.

Thus, it is not a good idea to add active checks to

stateless fuzzers. Our approach, on the other hand,

adds active checks that target specific REST API rule

breaches to stateful REST API fuzzing. Many HTTP-

fuzzers have their roots in older web-page crawlers

and scanners, so they can check for a wide variety of

HTTP-specific properties. For example, they can

ensure that responses use proper HTTP-usage and

even detect SQL-injections or cross-site scripting

attacks when entire web pages with HTML and

Javascript code are returned. On the other hand, web-

pages are not often returned by REST APIs,

rendering most of the previously described testing

capabilities useless. Our study presents new security

criteria that are tailored to RESTAPI use, in contrast

to HTTP-fuzzers and web scanners. Because an

adversary may utilize a rule's infraction to

compromise a service's health or steal sensitive data

or resources, these regulations are considered

security-related. Request idempotence, in which

sending the same GET or PATCH request again has

no impact on the result, is one example of a rule in

REST API use that is not "exploitable" when broken,

although we don't cover it in this article. Considering

how common REST APIs are, it's surprising that

there isn't much information on how to use them

securely. Managing authentication tokens and API

keys is a common theme in security guidelines from

organizations such as OWASP [19] (Open Web

Application Security Project) or books on REST

APIs [1] or micro-services [17]. When it comes to

managing resources and validating inputs, the REST

API does not provide any explicit instructions. The

four security rules presented in this work are novel,

as far as we are aware. In Section III, we utilized the

term "active checker" from [10] to indicate that our

checkers create new tests with the express purpose of

detecting rule violations, rather than just monitoring

API request and response sequences as in

conventional runtime verification [8], [11]. We

employ numerous independent security checkers

concurrently, much as in [10]. Our approach to

creating new tests differs from that of [10] in that it

does not include symbolic execution, constraint

derivation, or solution. Our fuzzing tool and its

checkers can only view requests and answers from

REST APIs; they have no idea how the services we

test really function. It would be beneficial to delve

more into this possibility in future study, since cloud

services are often intricate distributed systems with

components written in various languages.

Consequently, generic symbolic-execution-based

techniques may appear difficult. Penetration testing,

sometimes known as pen testing, is the primary

method now used to guarantee the security of cloud

services. This involves security specialists reviewing

the architecture, design, and code of cloud services

from a security standpoint. Pen testing is costly, has

limited reach, and requires a lot of human effort. In

addition to pen testing, fuzzy logic and security

checkers (such as the ones covered in this article)

may help automate the process of finding certain

types of security vulnerabilities.

VII. CONCLUSION

In order to capture the desired qualities of REST

APIs and services, we established four security

criteria. Afterwards, we demonstrated how to include

active property checkers into a stateful REST API

fuzzer in order to automatically test for and identify

rule violations. Using the fuzzer and checkers

outlined in this work, we have successfully fuzzed

about a dozen production Azure and Office-365

http://www.jbstonline.com/

S. Sushmitha, JBio sci Tech, Vol 13(2),2025, 01-11
ISSN:0976-0172

Journal of Bioscience And Technology
www.jbstonline.com

11

cloud services. Every one of these services has a

couple of new vulnerabilities discovered by our

fuzzing efforts. Our new security checkers have

identified rule violations as accounting for about one

third of these issues, while "500 Internal Server

Errors" accounts for around two thirds. The service

owners were notified of all the issues, and they have

all been resolved. It is rather evident that security

vulnerabilities might arise from disobeying the four

security principles presented in this study. The

service owners have all taken the issues we detected

seriously; as a result, our current bug "fixed/found"

ratio is very close to 100%. In addition, fixing these

problems is preferable than taking the chance of a

live occurrence, which might be caused by an

attacker or accidentally, and the results of which are

uncertain. Lastly, the fact that these errors can be

reproduced with relative ease and that our fuzzing

method does not produce any false positives is a plus.

On what scale do these findings apply? The only way

to find out is to fuzz additional services using their

REST APIs and examine more attributes to find

various types of vulnerabilities and problems.

Surprisingly, there is a lack of security-related

guidelines about the use of REST APIs, despite the

recent expansion of these APIs for use in cloud and

online services. Contributing four rules whose

infractions are security-relevant and nontrivial to

verify and fulfill, our work takes a start in that

direction.

REFERENCES

[1] S. Allamaraju. RESTful Web Services Cookbook.

O’Reilly, 2010.

[2] Amazon. AWS. https://aws.amazon.com/.

[3] APIFuzzer.

https://github.com/KissPeter/APIFuzzer.

[4] AppSpider.

https://www.rapid7.com/products/appspider.

[5] V. Atlidakis, P. Godefroid, and M. Polishchuk.

RESTler: Stateful REST API Fuzzing. In 41st

ACM/IEEE International Conference on Software

Engineering (ICSE’2019), May 2019.

[6] BooFuzz. https://github.com/jtpereyda/boofuzz.

[7] Burp Suite. https://portswigger.net/burp.

[8] D. Drusinsky. The Temporal Rover and the ATG

Rover. In Proceedings of the 2000 SPIN Workshop,

volume 1885 of Lecture Notes in Computer Science,

pages 323–330. Springer-Verlag, 2000.

[9] R. T. Fielding. Architectural Styles and the

Design of Network-based Software Architectures.

PhD Thesis, UC Irvine, 2000.

[10] P. Godefroid, M. Levin, and D. Molnar. Active

Property Checking. In Proceedings of

EMSOFT’2008 (8th Annual ACM & IEEE

Conference on Embedded Software), pages 207–216,

Atlanta, October 2008. ACM Press.

[11] K. Havelund and G. Rosu. Monitoring Java

Programs with Java PathExplorer. In Proceedings of

RV’2001 (First Workshop on Runtime Verification),

volume 55 of Electronic Notes in Theoretical

Computer Science, Paris, July 2001.

[12] R. L¨ammel and W. Schulte. Controllable

Combinatorial Coverage in Grammar-Based Testing.

In Proceedings of TestCom’2006, 2006.

[13] Microsoft. Azure.

https://azure.microsoft.com/en-us/.

[14] Microsoft. Azure DNS Zone REST API.

https://docs.microsoft.com/enus/rest/api/dns/zones/ge

t.

[15] Microsoft. Microsoft Azure Swagger

Specifications. https://github.com/ Azure/azure-rest-

api-specs.

http://www.jbstonline.com/
https://aws.amazon.com/
https://github.com/KissPeter/APIFuzzer
https://www.rapid7.com/products/appspider
https://github.com/jtpereyda/boofuzz
https://portswigger.net/burp
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/enus/rest/api/dns/zones/get
https://docs.microsoft.com/enus/rest/api/dns/zones/get

